27 resultados para Non-Fermi-liquid scaling
Resumo:
Mining activities pose severe environmental risks worldwide, generating extreme pH conditions and high concentrations of heavy metals, which can have major impacts on the survival of organisms. In this work, pyrosequencing of the V3 region of the 16S rDNA was used to analyze the bacterial communities in soil samples from a Brazilian copper mine. For the analysis, soil samples were collected from the slopes (geotechnical structures) and the surrounding drainage of the Sossego mine (comprising the Sossego and Sequeirinho deposits). The results revealed complex bacterial diversity, and there was no influence of deposit geographic location on the composition of the communities. However, the environment type played an important role in bacterial community divergence; the composition and frequency of OTUs in the slope samples were different from those of the surrounding drainage samples, and Acidobacteria, Chloroflexi, Firmicutes, and Gammaproteobacteria were responsible for the observed difference. Chemical analysis indicated that both types of sample presented a high metal content, while the amounts of organic matter and water were higher in the surrounding drainage samples. Non-metric multidimensional scaling (N-MDS) analysis identified organic matter and water as important distinguishing factors between the bacterial communities from the two types of mine environment. Although habitat-specific OTUs were found in both environments, they were more abundant in the surrounding drainage samples (around 50 %), and contributed to the higher bacterial diversity found in this habitat. The slope samples were dominated by a smaller number of phyla, especially Firmicutes. The bacterial communities from the slope and surrounding drainage samples were different in structure and composition, and the organic matter and water present in these environments contributed to the observed differences.
Resumo:
We perform variational studies of the interaction-localization problem to describe the interaction-induced renormalizations of the effective (screened) random potential seen by quasiparticles. Here we present results of careful finite-size scaling studies for the conductance of disordered Hubbard chains at half-filling and zero temperature. While our results indicate that quasiparticle wave functions remain exponentially localized even in the presence of moderate to strong repulsive interactions, we show that interactions produce a strong decrease of the characteristic conductance scale g^{*} signaling the crossover to strong localization. This effect, which cannot be captured by a simple renormalization of the disorder strength, instead reflects a peculiar non-Gaussian form of the spatial correlations of the screened disordered potential, a hitherto neglected mechanism to dramatically reduce the impact of Anderson localization (interference) effects.
Resumo:
The aim of the study was to analyze the frequency of epidermal growth factor receptor (EGFR) mutations in Brazilian non-small cell lung cancer patients and to correlate these mutations with response to benefit of platinum-based chemotherapy in non-small cell lung cancer (NSCLC). Our cohort consisted of prospective patients with NSCLCs who received chemotherapy (platinum derivates plus paclitaxel) at the [UNICAMP], Brazil. EGFR exons 18-21 were analyzed in tumor-derived DNA. Fifty patients were included in the study (25 with adenocarcinoma). EGFR mutations were identified in 6/50 (12 %) NSCLCs and in 6/25 (24 %) adenocarcinomas; representing the frequency of EGFR mutations in a mostly self-reported White (82.0 %) southeastern Brazilian population of NSCLCs. Patients with NSCLCs harboring EGFR exon 19 deletions or the exon 21 L858R mutation were found to have a higher chance of response to platinum-paclitaxel (OR 9.67 [95 % CI 1.03-90.41], p = 0.047). We report the frequency of EGFR activating mutations in a typical southeastern Brazilian population with NSCLC, which are similar to that of other countries with Western European ethnicity. EGFR mutations seem to be predictive of a response to platinum-paclitaxel, and additional studies are needed to confirm or refute this relationship.
Resumo:
Cryosurgery is an efficient therapeutic technique used to treat benign and malignant cutaneous diseases. The primary active mechanism of cryosurgery is related to vascular effects on treated tissue. After a cryosurgical procedure, exuberant granulation tissue is formed at the injection site, probably as a result of angiogenic stimulation of the cryogen and inflammatory response, particularly in endothelial cells. To evaluate the angiogenic effects of freezing, as part of the phenomenon of healing rat skin subjected to previous injury. Two incisions were made in each of the twenty rats, which were divided randomly into two groups of ten. After 3 days, cryosurgery with liquid nitrogen was performed in one of incisions. The rats' samples were then collected, cut and stained to conduct histopathological examination, to assess the local angiogenesis in differing moments and situations. It was possible to demonstrate that cryosurgery, in spite of promoting cell death and accentuated local inflammation soon after its application, induces quicker cell proliferation in the affected tissue and maintenance of this rate in a second phase, than in tissue healing without this procedure. These findings, together with the knowledge that there is a direct relationship between mononuclear cells and neovascularization (the development of a rich system of new vessels in injury caused by cold), suggest that cryosurgery possesses angiogenic stimulus, even though complete healing takes longer to occur. The significance level for statistical tests was 5% (p<0,05).
Resumo:
The metabolic enzyme fatty acid synthase (FASN) is responsible for the endogenous synthesis of palmitate, a saturated long-chain fatty acid. In contrast to most normal tissues, a variety of human cancers overexpress FASN. One such cancer is cutaneous melanoma, in which the level of FASN expression is associated with tumor invasion and poor prognosis. We previously reported that two FASN inhibitors, cerulenin and orlistat, induce apoptosis in B16-F10 mouse melanoma cells via the intrinsic apoptosis pathway. Here, we investigated the effects of these inhibitors on non-tumorigenic melan-a cells. Cerulenin and orlistat treatments were found to induce apoptosis and decrease cell proliferation, in addition to inducing the release of mitochondrial cytochrome c and activating caspases-9 and -3. Transfection with FASN siRNA did not result in apoptosis. Mass spectrometry analysis demonstrated that treatment with the FASN inhibitors did not alter either the mitochondrial free fatty acid content or composition. This result suggests that cerulenin- and orlistat-induced apoptosis events are independent of FASN inhibition. Analysis of the energy-linked functions of melan-a mitochondria demonstrated the inhibition of respiration, followed by a significant decrease in mitochondrial membrane potential (ΔΨm) and the stimulation of superoxide anion generation. The inhibition of NADH-linked substrate oxidation was approximately 40% and 61% for cerulenin and orlistat treatments, respectively, and the inhibition of succinate oxidation was approximately 46% and 52%, respectively. In contrast, no significant inhibition occurred when respiration was supported by the complex IV substrate N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). The protection conferred by the free radical scavenger N-acetyl-cysteine indicates that the FASN inhibitors induced apoptosis through an oxidative stress-associated mechanism. In combination, the present results demonstrate that cerulenin and orlistat induce apoptosis in non-tumorigenic cells via mitochondrial dysfunction, independent of FASN inhibition.
Resumo:
Lipidic mixtures present a particular phase change profile highly affected by their unique crystalline structure. However, classical solid-liquid equilibrium (SLE) thermodynamic modeling approaches, which assume the solid phase to be a pure component, sometimes fail in the correct description of the phase behavior. In addition, their inability increases with the complexity of the system. To overcome some of these problems, this study describes a new procedure to depict the SLE of fatty binary mixtures presenting solid solutions, namely the Crystal-T algorithm. Considering the non-ideality of both liquid and solid phases, this algorithm is aimed at the determination of the temperature in which the first and last crystal of the mixture melts. The evaluation is focused on experimental data measured and reported in this work for systems composed of triacylglycerols and fatty alcohols. The liquidus and solidus lines of the SLE phase diagrams were described by using excess Gibbs energy based equations, and the group contribution UNIFAC model for the calculation of the activity coefficients of both liquid and solid phases. Very low deviations of theoretical and experimental data evidenced the strength of the algorithm, contributing to the enlargement of the scope of the SLE modeling.
Resumo:
Although malaria in Brazil almost exclusively occurs within the boundaries of the Amazon Region, some concerns are raised regarding imported malaria to non-endemic areas of the country, notably increased incidence of complications due to delayed diagnoses. However, although imported malaria in Brazil represents a major health problem, only a few studies have addressed this subject. A retrospective case series is presented in which 263 medical charts were analysed to investigate the clinical and epidemiological characterization of malaria cases that were diagnosed and treated at Hospital & Clinics, State University of Campinas between 1998 and 2011. Amongst all medical charts analysed, 224 patients had a parasitological confirmed diagnosis of malaria. Plasmodium vivax and Plasmodium falciparum were responsible for 67% and 30% of the infections, respectively. The majority of patients were male (83%) of a productive age (median, 37 years old). Importantly, severe complications did not differ significantly between P. vivax (14 cases, 9%) and P. falciparum (7 cases, 10%) infections. Severe malaria cases were frequent among imported cases in Brazil outside of the Amazon area. The findings reinforce the idea that P. vivax infections in Brazil are not benign, regardless the endemicity of the area studied. Moreover, as the hospital is located in a privileged site, it could be used for future studies of malaria relapses and primaquine resistance mechanisms. Finally, based on the volume of cases treated and the secondary complications, referral malaria services are needed in the non-endemic areas of Brazil for a rapid and efficient and treatment.
Resumo:
A tracer experiment is carried out with transgenic T (variety M 7211 RR) and non-transgenic NT (variety MSOY 8200) soybean plants to evaluate if genetic modification can influence the uptake and translocation of Fe. A chelate of EDTA with enriched stable (57)Fe is applied to the plants cultivated in vermiculite plus substrate and the (57)Fe acts as a tracer. The exposure of plants to enriched (57)Fe causes the dilution of the natural previously existing Fe in the plant compartments and then the changed Fe isotopic ratio ((57)Fe/(56)Fe) is measured using a quadrupole-based inductively coupled plasma mass spectrometer equipped with a dynamic reaction cell (DRC). Mathematical calculations based on the isotope dilution methodology allow distinguishing the natural abundance Fe from the enriched Fe (incorporated during the experiment). The NT soybean plants acquire higher amounts of Fe from natural abundance (originally present in the soil) and from enriched Fe (coming from the (57)Fe-EDTA during the experiment) than T soybean ones, demonstrating that the NT soybean plants probably absorb higher amounts of Fe, independently of the source. The percentage of newly incorporated Fe (coming from the treatment) was approximately 2.0 and 1.1% for NT and T soybean plants, respectively. A higher fraction (90.1%) of enriched Fe is translocated to upper parts, and a slightly lower fraction (3.8%) is accumulated in the stems by NT plants than by T ones (85.1%; 5.1%). Moreover, in both plants, the Fe-EDTA facilitates the transport and translocation of Fe to the leaves. The genetic modification is probably responsible for differences observed between T and NT soybean plants.
Resumo:
This work describes the evaluation of metals and (metallo)proteins in vitreous humor samples and their correlations with some biological aspects in different post-mortem intervals (1-7 days), taking into account both decomposing and non-decomposing bodies. After qualitative evaluation of the samples involving 26 elements, representative metal ions (Fe, Mg and Mo) are determined by inductively coupled plasma mass spectrometry after using mini-vial decomposition system for sample preparation. A significant trend for Fe is found with post-mortem time for decomposing bodies because of a significant increase of iron concentration when comparing samples from bodies presenting 3 and 7 days post-mortem interval. An important clue to elucidate the role of metals is the coupling of liquid chromatography with inductively coupled plasma mass spectrometry for identification of metals linked to proteins, as well as mass spectrometry for the identification of those proteins involved in the post-mortem interval.
Resumo:
This article seeks to investigate associations between satisfaction with life and sociodemographic variables, health conditions, functionality, social involvement and social support among elderly caregivers and non-caregivers, as well as between satisfaction and the intensity of stress in the caregiver group. A sample of 338 caregivers was selected according to two items of the Brazilian version of the Elders Life Stress Inventory. A comparison-group of elderly non-caregivers was selected at random, with a similar gender, age and income profile. Data were derived from self-reported questionnaires and scales. Elderly caregivers with low levels of satisfaction and high levels of stress revealed more symptoms of insomnia, fatigue, diseases and worse IADL performance. Those with greater satisfaction and less stress revealed a good level of social support. Insomnia, depression and fatigue were associated with low satisfaction among caregivers, and with fatigue, depression and low social support among non-caregivers. It was considered relevant that instrumental, psychological and informative support can improve the quality of life and the quality of care provided by elderly caregivers, especially if they are affected by unfavorable health and psychosocial conditions and low satisfaction with life.
Resumo:
The present study analyzed metallothionein (MT) excretion from liver to bile in Nile Tilapia (Oreochromis niloticus) exposed to sub-lethal copper concentrations (2mgL(-1)) in a laboratory setting. MTs in liver and bile were quantified by spectrophotometry after thermal incubation and MT metal-binding profiles were characterized by size exclusion high performance liquid chromatography coupled to ICP-MS (SEC-HPLC-ICP-MS). Results show that liver MT is present in approximately 250-fold higher concentrations than bile MT in non-exposed fish. Differences between the MT profiles from the control and exposed group were observed for both matrices, indicating differential metal-binding behavior when comparing liver and bile MT. This is novel data regarding intra-organ MT comparisons, since differences between organs are usually present only with regard to quantification, not metal-binding behavior. Bile MT showed statistically significant differences between the control and exposed group, while the same did not occur with liver MT. This indicates that MTs synthesized in the liver accumulate more slowly than MTs excreted from liver to bile, since the same fish presented significantly higher MT levels in liver when compared to bile. We postulate that bile, although excreted in the intestine and partially reabsorbed by the same returning to the liver, may also release MT-bound metals more rapidly and efficiently, which may indicate an efficient detoxification route. Thus, we propose that the analysis of bile MTs to observe recent metal exposure may be more adequate than the analysis of liver MTs, since organism responses to metals are more quickly observed in bile, although further studies are necessary.
Resumo:
A rapid, sensitive and specific method for quantifying propylthiouracil in human plasma using methylthiouracil as the internal standard (IS) is described. The analyte and the IS were extracted from plasma by liquid-liquid extraction using an organic solvent (ethyl acetate). The extracts were analyzed by high performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC-MS/MS) in negative mode (ES-). Chromatography was performed using a Phenomenex Gemini C18 5μm analytical column (4.6mm×150mm i.d.) and a mobile phase consisting of methanol/water/acetonitrile (40/40/20, v/v/v)+0.1% of formic acid. For propylthiouracil and I.S., the optimized parameters of the declustering potential, collision energy and collision exit potential were -60 (V), -26 (eV) and -5 (V), respectively. The method had a chromatographic run time of 2.5min and a linear calibration curve over the range 20-5000ng/mL. The limit of quantification was 20ng/mL. The stability tests indicated no significant degradation. This HPLC-MS/MS procedure was used to assess the bioequivalence of two propylthiouracil 100mg tablet formulations in healthy volunteers of both sexes in fasted and fed state. The geometric mean and 90% confidence interval CI of Test/Reference percent ratios were, without and with food, respectively: 109.28% (103.63-115.25%) and 115.60% (109.03-122.58%) for Cmax, 103.31% (100.74-105.96%) and 103.40% (101.03-105.84) for AUClast. This method offers advantages over those previously reported, in terms of both a simple liquid-liquid extraction without clean-up procedures, as well as a faster run time (2.5min). The LOQ of 20ng/mL is well suited for pharmacokinetic studies. The assay performance results indicate that the method is precise and accurate enough for the routine determination of the propylthiouracil in human plasma. The test formulation with and without food was bioequivalent to reference formulation. Food administration increased the Tmax and decreased the bioavailability (Cmax and AUC).
Resumo:
Beta cell destruction in type 1 diabetes (TID) is associated with cellular oxidative stress and mitochondrial pathway of cell death. The aim of this study was to determine whether oxidative stress and mitochondrial dysfunction are present in T1D model (non-obese diabetic mouse, NOD) and if they are related to the stages of disease development. NOD mice were studied at three stages: non-diabetic, pre-diabetic, and diabetic and compared with age-matched Balb/c mice. Mitochondria respiration rates measured at phosphorylating and resting states in liver and soleus biopsies and in isolated liver mitochondria were similar in NOD and Balb/c mice at the three disease stages. However, NOD liver mitochondria were more susceptible to calcium-induced mitochondrial permeability transition as determined by cyclosporine-A-sensitive swelling and by decreased calcium retention capacity in all three stages of diabetes development. Mitochondria H2O2 production rate was higher in non-diabetic, but unaltered in pre-diabetic and diabetic NOD mice. The global cell reactive oxygen species (ROS), but not specific mitochondria ROS production, was significantly increased in NOD lymphomononuclear and stem cells in all disease stages. In addition, marked elevated rates of 2',7'-dichlorodihydrofluorescein (H2DCF) oxidation were observed in pancreatic islets from non-diabetic NOD mice. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) and lipidomic approach, we identified oxidized lipid markers in NOD liver mitochondria for each disease stage, most of them being derivatives of diacylglycerols and phospholipids. These results suggest that the cellular oxidative stress precedes the establishment of diabetes and may be the cause of mitochondrial dysfunction that is involved in beta cell death.
Resumo:
Chlorophenylpiperazines (CPP) are psychotropic drugs used in nightclub parties and are frequently used in a state of sleep deprivation, a condition which can potentiate the effects of psychoactive drugs. This study aimed to investigate the effects of sleep deprivation and sleep rebound (RB) on anxiety-like measures in mCPP-treated mice using the open field test. We first optimized our procedure by performing dose-effect curves and examining different pretreatment times in naïve male Swiss mice. Subsequently, a separate cohort of mice underwent paradoxical sleep deprivation (PSD) for 24 or 48h. In the last experiment, immediately after the 24h-PSD period, mice received an injection of saline or mCPP, but their general activity was quantified in the open field only after the RB period (24 or 48h). The dose of 5mgmL(-1) of mCPP was the most effective at decreasing rearing behavior, with peak effects 15min after injection. PSD decreased locomotion and rearing behaviors, thereby inhibiting a further impairment induced by mCPP. Plasma concentrations of mCPP were significantly higher in PSD 48h animals compared to the non-PSD control group. Twenty-four hours of RB combined with mCPP administration produced a slight reduction in locomotion. Our results show that mCPP was able to significantly change the behavior of naïve, PSD, and RB mice. When combined with sleep deprivation, there was a higher availability of drug in plasma levels. Taken together, our results suggest that sleep loss can enhance the behavioral effects of the potent psychoactive drug, mCPP, even after a period of rebound sleep.
Resumo:
The aim of the present work was to produce a cationic solid lipid nanoparticle (SLN) as non-viral vector for protein delivery. Cationic SLN were produced by double emulsion method, composed of softisan(®) 100, cetyltrimethylammonium bromide (CTAB), Tween(®) 80, Span(®) 80, glycerol and lipoid(®) S75 loading insulin as model protein. The formulation was characterized in terms of mean hydrodynamic diameter (z-ave), polydispersity index (PI), zeta potential (ZP), stability during storage time, stability after lyophilization, effect of toxicity and transfection ability in HeLa cells, in vitro release profile and morphology. SLN were stable for 30days and showed minimal changes in their physicochemical properties after lyophilization. The particles exhibited a relatively slow release, spherical morphology and were able to transfect HeLa cells, but toxicity remained an obstacle. Results suggest that SLN are nevertheless promising for delivery of proteins or nucleic acids for gene therapy.