2 resultados para Spatial lag regression model
em Archive of European Integration
Resumo:
The significant gains in export market shares made in a number of vulnerable euro-area crisis countries have not been accompanied by an appropriate improvement in price competitiveness. This paper argues that, under certain conditions, firms consider export activity as a substitute for serving domestic demand. The strength of the link between domestic demand and exports is dependent on capacity constraints. Our econometric model for six euro-area countries suggests domestic demand pressure and capacity-constraint restrictions as additional variables of a properly specified export equation. As an innovation to the literature, we assess the empirical significance through the logistic and the exponential variant of the non-linear smooth transition regression model. We find that domestic demand developments are relevant for the short-run dynamics of exports in particular during more extreme stages of the business cycle. A strong substitutive relationship between domestic and foreign sales can most clearly be found for Spain, Portugal and Italy, providing evidence of the importance of sunk costs and hysteresis in international trade.
Resumo:
This paper empirically analyses a dataset of more than 7,300 agricultural land sales transactions from 2001 and 2007 to identify the factors influencing agricultural land prices in Bavaria. We use a general spatial model, which combines a spatial lag and a spatial error model, and in addition account for endogeneity introduced by the spatially lagged dependent variable as well as other explanatory variables. Our findings confirm the strong influence of agricultural factors such as land productivity, of variables describing the regional land market structure, and of non-agricultural factors such as urban pressure on agricultural land prices. Moreover, the involvement of public authorities as a seller or buyer increases sales prices in Bavaria. We find a significant capitalisation of government support payments into agricultural land, where a decrease of direct payments by 1% would decrease land prices in 2007 and 2001 by 0.27% and 0.06%, respectively. In addition, we confirm strong spatial relationships in our dataset. Neglecting this leads to biased estimates, especially if aggregated data is used. We find that the price of a specific plot increases by 0.24% when sales prices in surrounding areas increase by 1%.