6 resultados para Photovoltaic power generation
em Archive of European Integration
Resumo:
The outlook for natural gas demand is often considered bright, especially for gas used to generate electricity. This is because gas is the cleanest of all fossil fuels. The carbon intensity of modern gas-fired power stations is less than 50% that of modern coal plants. Moreover, gas-fired units are well-suited to follow rapid swings in supply and demand due to their flexibility. In the future, these balancing tasks will become more and more important given the intermittent character of the supply of wind and solar power. Gas seems to hold out the promise of being a key pillar of the energy transition and the perfect partner of renewables. Given the EU’s long-term climate policy goals, however, there is strong evidence that demand for gas for purposes of power generation peaked as early as 2010.
Resumo:
The aim of this technical report is to quantify alternative energy demand and supply scenarios for ten southern and eastern Mediterranean countries up to 2030. The report presents the model-based results of four alternative scenarios that are broadly in line with the MEDPRO scenario specifications on regional integration and cooperation with the EU. The report analyses the main implications of the scenarios in the following areas: • final energy demand by sector (industry, households, services, agriculture and transport); • the evolution of the power generation mix, the development of renewable energy sources and electricity exports to the EU; • primary energy production and the balance of trade for hydrocarbons; • energy-related CO2 emissions; and • power generation costs.
Resumo:
The aim of this report is to elaborate the MEDPRO Energy Reference Scenario for electricity demand and power generation (by energy source) in the southern and eastern part of the Mediterranean (MED- 11 countries) up to 2030. The report assesses the prospects for the implementation of renewable energy in the MED-11 countries over the next decades. The development of renewable energy is a cornerstone of the MED-11 countries’ efforts to improve security of supply and reduce CO2 emissions; the prospects for regional renewable-energy plans (the Mediterranean Solar Plan, DESERTEC and Medgrid); and the development of electricity interconnections in MED-11 countries and the possible integration of Mediterranean electricity and renewable markets (both south–south and south–north).
Resumo:
Summary. The European electricity sector will have to deal with a huge challenge in the decades to come. On the one hand, electrical power is increasingly substituted for other forms of energy. It has been forecast that electricity demand will increase in the future (notably because of new needs in transport and heat sectors), although it is currently stagnant, mainly because of the economic crisis. Unless a major alternative energy source is discovered, electricity will become the central energy pillar in the long term. On the other hand, electricity production remains uncertain and will depend on numerous factors: the growth of renewable energy and decentralized energy, the renewal of old power generation capacities, increased external dependency, CO2 charges, etc. This increases the demand for electricity networks that are more reliable, more efficient, and more flexible. Europe’s current electricity networks are ageing, and, as already indicated by the International Energy Agency, many of them will need to be modernized or replaced in the decades to come. Finally, the growing impact of energy trading also needs to be taken into account. These considerations explain the need to modernize the electric grid through various ICT means. This modernization alone may allow the grid to become more flexible and interactive, to provide real time feedback, more adaptation to a fluctuating demand, and finally to reduce the global electricity costs. The paper begins with a description of the EU definition of the term ‘smart grid’ (§ 1) and of the body in charge of advising the Commission (§ 2). The EU legal framework applicable to smart grids is also detailed (§ 3). It is a rather complex domain, connected to various regulations. The paper then examines three critical factors in the development of smart grids (and smart meters as a precondition). Standardization is quite complex, but absolutely essential (§ 4). Innovation is not easily put into action (§ 5). Finally, as digital insecurity has worsened dramatically in recent years, the security of electricity networks, and especially their multiplied electronic components, will become increasingly important (§ 6). Lastly, the paper provides a concise overview of the progress of smart grids in the EU in recent years (§ 7). In a nutshell, the conclusion is that progress is quite slow, many obstacles remain, and, given the appearance of many new regulatory problems, it would be useful to organize a review of the present EU strategy.
Resumo:
Recently, few aspects of the debate surrounding energy have been as divisive as capacity markets. After having given a green light to a capacity remuneration scheme in the UK in 2014, the EU Commission is now considering starting a sector inquiry in several member states. This paper aims at shedding some light on what capacity markets are about and what are the EU-specific implications, arguing that the debate is ill framed within a market context still focused on conventional power generation, and making the case for a coordinated approach to solve the fallacies of the present system.