2 resultados para Growth Factors
em Archive of European Integration
Resumo:
After a dramatic economic decline after the collapse of the Soviet Union and the financial breakdown of 1998, the Russian economy has begun to emerge from its deep crisis. The years 1999-2004 were a period of dynamic development in all sectors of Russian economy, and saw a rapid growth in GDP of over 7 per cent per year. Russia owed the excellent macroeconomic results of that period to a combination of favourable factors. The key factors were: high hydrocarbon prices on the global markets; an increase in Russia's international competitiveness thanks to the "rouble devaluation effect" (following the 1998 financial crash); and the market reforms carried out within that period. In 2004, despite very high oil and gas prices on world markets, a slowdown of the GDP growth took place. Even though the economy is still developing fairly rapidly, we are able to say that Russia is exhausting those traditional mechanisms (apart from oil and gas prices) which have hitherto stimulated GDP growth. Moreover, there are no new mechanisms which could replace the old ones. In the longer term, these unsolved structural problems may seriously impede Russia's economic growth.
Resumo:
In the long term, productivity and especially productivity growth are necessary conditions for the survival of a farm. This paper focuses on the technology choice of a dairy farm, i.e. the choice between a conventional and an automatic milking system. Its aim is to reveal the extent to which economic rationality explains investing in new technology. The adoption of robotics is further linked to farm productivity to show how capital-intensive technology has affected the overall productivity of milk production. The empirical analysis applies a probit model and an extended Cobb-Douglas-type production function to a Finnish farm-level dataset for the years 2000–10. The results show that very few economic factors on a dairy farm or in its economic environment can be identified to affect the switch to automatic milking. Existing machinery capital and investment allowances are among the significant factors. The results also indicate that the probability of investing in robotics responds elastically to a change in investment aids: an increase of 1% in aid would generate an increase of 2% in the probability of investing. Despite the presence of non-economic incentives, the switch to robotic milking is proven to promote productivity development on dairy farms. No productivity growth is observed on farms that keep conventional milking systems, whereas farms with robotic milking have a growth rate of 8.1% per year. The mean rate for farms that switch to robotic milking is 7.0% per year. The results show great progress in productivity growth, with the average of the sector at around 2% per year during the past two decades. In conclusion, investments in new technology as well as investment aids to boost investments are needed in low-productivity areas where investments in new technology still have great potential to increase productivity, and thus profitability and competitiveness, in the long run.