11 resultados para Electric Vehicles, Transport system, Power system, Modelling, Energy, Greenhouse gas emissions

em Archive of European Integration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper assesses the impact of decarbonisation of the energy sector on employment in Europe. Setting the stage for such an assessment, the paper provides an analysis of possible pathways to decarbonise Europe’s energy system, taking into account EU greenhouse gas emissions reduction targets for 2020 and 2050. It pays particular attention to various low-carbon technologies that could be deployed in different regions of the EU. It concludes that efficiency and renewables play a major role in any decarbonisation scenario and that the power sector is the main enabler for the transition to a low-carbon economy in Europe, despite rising electricity demand. The extent of the decline in the share of fossil fuels will largely depend on the existence of carbon capture and storage (CCS), which remains a major source of uncertainty.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

European Union energy policy calls for nothing less than a profound transformation of the EU's energy system: by 2050 decarbonised electricity generation with 80-95% fewer greenhouse gas emissions, increased use of renewables, more energy efficiency, a functioning energy market and increased security of supply are to be achieved. Different EU policies (e.g., EU climate and energy package for 2020) are intended to create the political and regulatory framework for this transformation. The sectorial dynamics resulting from these EU policies already affect the systems of electricity generation, transportation and storage in Europe, and the more effective the implementation of new measures the more the structure of Europe's power system will change in the years to come. Recent initiatives such as the 2030 climate/energy package and the Energy Union are supposed to keep this dynamic up. Setting new EU targets, however, is not necessarily the same as meeting them. The impact of EU energy policy is likely to have considerable geo-economic implications for individual member states: with increasing market integration come new competitors; coal and gas power plants face new renewable challengers domestically and abroad; and diversification towards new suppliers will result in new trade routes, entry points and infrastructure. Where these implications are at odds with powerful national interests, any member state may point to Article 194, 2 of the Lisbon Treaty and argue that the EU's energy policy agenda interferes with its given right to determine the conditions for exploiting its energy resources, the choice between different energy sources and the general structure of its energy supply. The implementation of new policy initiatives therefore involves intense negotiations to conciliate contradicting interests, something that traditionally has been far from easy to achieve. In areas where this process runs into difficulties, the transfer of sovereignty to the European level is usually to be found amongst the suggested solutions. Pooling sovereignty on a new level, however, does not automatically result in a consensus, i.e., conciliate contradicting interests. Rather than focussing on the right level of decision making, European policy makers need to face the (inconvenient truth of) geo-economical frictions within the Union that make it difficult to come to an arrangement. The reminder of this text explains these latter, more structural and sector-related challenges for European energy policy in more detail, and develops some concrete steps towards a political and regulatory framework necessary to overcome them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Like other regions of the world, the EU is developing biofuels in the transport sector to reduce oil consumption and mitigate climate change. To promote them, it has adopted favourable legislation since the 2000s. In 2009 it even decided to oblige each Member State to ensure that by 2020 the share of energy coming from renewable sources reached at least 10% of their final consumption of energy in the transport sector. Biofuels are considered the main instrument to reach that percentage since the development of other alternatives (such as hydrogen and electricity) will take much longer than expected. Meanwhile, these various legislative initiatives have driven the production and consumption of biofuels in the EU. Biofuels accounted for 4.7% of EU transport fuel consumption in 2011. They have also led to trade and investment in biofuels on a global scale. This large-scale expansion of biofuels has, however, revealed numerous negative impacts. These stem from the fact that first-generation biofuels (i.e., those produced from food crops), of which the most important types are biodiesel and bioethanol, are used almost exclusively to meet the EU’s renewable 10% target in transport. Their negative impacts are: socioeconomic (food price rises), legal (land-grabbing), environmental (for instance, water stress and water pollution; soil erosion; reduction of biodiversity), climatic (direct and indirect land-use effects resulting in more greenhouse gas emissions) and public finance issues (subsidies and tax relief). The extent of such negative impacts depends on how biofuel feedstocks are produced and processed, the scale of production, and in particular, how they influence direct land use change (DLUC) and indirect land use change (ILUC) and the international trade. These negative impacts have thus provoked mounting debates in recent years, with a particular focus on ILUC. They have forced the EU to re-examine how it deals with biofuels and submit amendments to update its legislation. So far, the EU legislation foresees that only sustainable biofuels (produced in the EU or imported) can be used to meet the 10% target and receive public support; and to that end, mandatory sustainability criteria have been defined. Yet they have a huge flaw. Their measurement of greenhouse gas savings from biofuels does not take into account greenhouse gas emissions resulting from ILUC, which represent a major problem. The Energy Council of June 2014 agreed to set a limit on the extent to which firstgeneration biofuels can count towards the 10% target. But this limit appears to be less stringent than the ones made previously by the European Commission and the European Parliament. It also agreed to introduce incentives for the use of advanced (second- and third-generation) biofuels which would be allowed to count double towards the 10% target. But this again appears extremely modest by comparison with what was previously proposed. Finally, the approach chosen to take into account the greenhouse gas emissions due to ILUC appears more than cautious. The Energy Council agreed that the European Commission will carry out a reporting of ILUC emissions by using provisional estimated factors. A review clause will permit the later adjustment of these ILUC factors. With such legislative orientations made by the Energy Council, one cannot consider yet that there is a major shift in the EU biofuels policy. Bolder changes would have probably meant risking the collapse of the high-emission conventional biodiesel industry which currently makes up the majority of Europe’s biofuel production. The interests of EU farmers would have also been affected. There is nevertheless a tension between these legislative orientations and the new Commission’s proposals beyond 2020. In any case, many uncertainties remain on this issue. As long as solutions have not been found to minimize the important collateral damages provoked by the first generation biofuels, more scientific studies and caution are needed. Meanwhile, it would be wise to improve alternative paths towards a sustainable transport sector, i.e., stringent emission and energy standards for all vehicles, better public transport systems, automobiles that run on renewable energy other than biofuels, or other alternatives beyond the present imagination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The issue: The European Union's emissions trading system (ETS), introduced in 2005, is the centerpiece of EU decarbonisation efforts and the biggest emissions trading scheme in the world. After a peak in May 2008, the price of ETS carbon allowances started to collapse, and industry, civil society and policymakers began to think about how to ‘repair the ETS’. However, the ETS is an effective and efficient tool to mitigate greenhouse gas emissions, and although prices have not been stable, it has evolved to cover more sectors and greenhouse gases, and to become more robust and less distorting. Prices are depressed because of an interplay of fundamental factors and a lack of confidence in the system. Policy challenge The ETS must be stabilised by reinforcing the credibility of the system so that the use of existing low-carbon alternatives (for example burning gas instead of coal) is incentivised and investment in low-carbon assets is ensured. Further-more, failure to reinvigorate the ETS might compromise the cost-effective synchronisation of European decarbonisation efforts across sectors and countries. To restore credibility and to ensure long-term commitment to the ETS, the European Investment Bank should auction guarantees on the future emission allowance price.This will reduce the risk for low-carbon investments and enable stabilisation of the ETS until a compromise is found on structural measures to reinforce it in order to achieve the EU's long-term decarbonisation targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Germany’s current energy strategy, known as the “energy transition”, or Energiewende, involves an accelerated withdrawal from the use of nuclear power plants and the development of renewable energy sources (RES). According to the government’s plans, the share of RES in electricity production will gradually increase from its present rate of 26% to 80% in 2050. Greenhouse gas emissions are expected to fall by 80–95% by 2050 when compared to 1990 levels. However, coal power plants still predominate in Germany’s energy mix – they produced 44% of electricity in 2014 (26% from lignite and 18% from hard coal). This makes it difficult to meet the emission reduction objectives, lignite combustion causes the highest levels of greenhouse gas emissions. In order to reach the emission reduction goals, the government launched the process of accelerating the reduction of coal consumption. On 2 July, the Federal Ministry for Economic Affairs and Energy published a plan to reform the German energy market which will be implemented during the present term of government. Emission reduction from coal power plants is the most important issue. This problem has been extensively discussed over the past year and has transformed into a conflict between the government and the coal lobby. The dispute reached its peak when lignite miners took to the streets in Berlin. As the government admits, in order to reach the long-term emission reduction objectives, it is necessary to completely liquidate the coal energy industry in Germany. This is expected to take place within 25 to 30 years. However, since the decision to decommission nuclear power plants was passed, the German ecological movement and the Green Party have shifted their attention to coal power plants, demanding that these be decommissioned by 2030 at the latest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 2009, President Obama pledged that, by 2020, the United States would achieve reductions in greenhouse gas emissions of 17% from 2005 levels. With the failure of Congress to adopt comprehensive climate legislation in 2010, the feasibility of the pledge was put in doubt. However, we find that the United States is near to reaching this goal: the country is currently on course to achieve reductions of 16.3% from 2005 levels in 2020. Three factors contribute to this outcome: greenhouse gas regulations under the Clean Air Act, secular trends including changes in relative fuel prices and energy efficiency and sub-national efforts. Perhaps even more surprising, domestic emissions are probably lower than would have been the case if the Waxman-Markey cap-and-trade proposal had become law in 2010. At this point, however, the United States is expected to fail to meet its financing commitments under the Copenhagen Accord for 2020.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new CEPS Task Force Report has identified possible pathways for achieving the EU’s ambitious climate change targets. It concludes that a GHG emissions reduction in line with EU climate change policy is possible, but it requires immediate action. This report argues that most of the reductions required of the transport sector in the EU could come from more energy-efficient vehicles, combined with the gradual introduction of low-carbon fuels and new engine technologies. The key policy for reducing GHG emissions in road transport is the steady tightening of emissions standards in line with technological progress. The report also identifies strategies for the transport system to become more energy and/or carbon efficient, arguing that leverage can be further enhanced by local and city governments’ incentives for efficient and low-carbon vehicles in line with local circumstances and choices. The Task Force on Low Carbon Transport brought together a diverse set of stakeholders from the car and oil industries, business associations, international organisations, member states, academic experts and NGOs. This authoritative report is the result of that unique collaboration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This BEEP explains the mechanism of the EU Emissions Trading System (ETS) for the greenhouse gas carbon dioxide and explore into its likely sustainability impact on European industry. In doing so, it focuses on energy-intensive industries like cement, steel and aluminium production as well as on the emerging hydrogen economy. The BEEP concludes that at the moment it is still very inconsistently implemented and has a fairly narrow scope regarding greenhouse gases and involved sectors. It may also give an incentive to relocate for energy-intensive industries. In its current format, the EU ETS does not yet properly facilitate long term innovation dynamics such as the transition to a hydrogen economy. Nevertheless, the EU ETS is foremost a working system that – with some improvements – has the potential to become a pillar for effective and efficient climate change policy that also gives incentives for investment into climate friendly policies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary. For more than two decades, the development of renewable energy sources (RES) has been an important aim of EU energy policy. It accelerated with the adoption of a 1997 White Paper and the setting a decade later of a 20% renewable energy target, to be reached by 2020. The EU counts on renewable energy for multiple purposes: to diversify its energy supply; to increase its security of supply; and to create new industries, jobs, economic growth and export opportunities, while at the same time reducing greenhouse gas (GHG) emissions. Many expectations rest on its development. Fossil fuels have been critical to the development of industrial nations, including EU Member States, which are now deeply reliant upon coal, oil and gas for nearly every aspect of their existence. Faced with some hard truths, however, the Member States have begun to shelve fossil fuel. These hard truths are as follows: firstly, fossil fuels are a finite resource, sometimes difficult to extract. This means that, at some point, fossil fuels are going to be more difficult to access in Europe or too expensive to use.1 The problem is that you cannot just stop using fossil fuels when they become too expensive; the existing infrastructure is profoundly reliant on fossil fuels. It is thus almost normal that a fierce resistance to change exists. Secondly, fossil fuels contribute to climate change. They emit GHG, which contribute greatly to climate change. As a consequence, their use needs to be drastically reduced. Thirdly, Member States are currently suffering a decline in their own fossil fuel production. This increases their dependence on increasingly costly fossil fuel imports from increasingly unstable countries. This problem is compounded by global developments: the growing share of emerging economies in global energy demand (in particular China and India but also the Middle East) and the development of unconventional oil and gas production in the United States. All these elements endanger the competitiveness of Member States’ economies and their security of supply. Therefore, new indigenous sources of energy and a diversification of energy suppliers and routes to convey energy need to be found. To solve all these challenges, in 2008 the EU put in place a strategy based on three objectives: sustainability (reduction of GHG), competitiveness and security of supply. The adoption of a renewable energy policy was considered essential for reaching these three strategic objectives. The adoption of the 20% renewable energy target has undeniably had a positive effect in the EU on the growth in renewables, with the result that renewable energy sources are steadily increasing their presence in the EU energy mix. They are now, it can be said, an integral part of the EU energy system. However, the necessity of reaching this 20% renewable energy target in 2020, combined with other circumstances, has also engendered in many Member States a certain number of difficulties, creating uncertainties for investors and postponing benefits for consumers. The electricity sector is the clearest example of this downside. Subsidies have become extremely abundant and vary from one Member State to another, compromising both fair competition and single market. Networks encountered many difficulties to develop and adapt. With technological progress these subsidies have also become quite excessive. The growing impact of renewable electricity fluctuations has made some traditional power plants unprofitable and created disincentives for new investments. The EU does clearly need to reassess its strategy. If it repeats the 2008 measures it will risk to provoke increased instability and costs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this technical report is to quantify alternative energy demand and supply scenarios for ten southern and eastern Mediterranean countries up to 2030. The report presents the model-based results of four alternative scenarios that are broadly in line with the MEDPRO scenario specifications on regional integration and cooperation with the EU. The report analyses the main implications of the scenarios in the following areas: • final energy demand by sector (industry, households, services, agriculture and transport); • the evolution of the power generation mix, the development of renewable energy sources and electricity exports to the EU; • primary energy production and the balance of trade for hydrocarbons; • energy-related CO2 emissions; and • power generation costs.