183 resultados para Energy policy--Economic aspects--Germany (West)
Resumo:
On 2 April in Lausanne, after months of intense negotiations, Iran and the E3+3 (France, Germany, and the UK plus China, Russia, and the US) agreed on a framework deal for the resolution of the nuclear dispute. EU High Representative for Foreign Affairs and Security Policy, Federica Mogherini, and Iran's Foreign Minister, Mohammad Javad Zarif, issued a joint statement announcing that "solutions on key parameters of a Joint Comprehensive Plan of Action" have been found. While differences remain on several issues, including the scope of International Atomic Energy Agency (IAEA) inspections and sanctions relief, the statement has nevertheless raised hopes that a final deal may be reached this summer. If accomplished, an agreement would bring an end to more than a decade of tensions between Iran and the international community. This would result in the lifting of several sanctions, which were adopted against Iran by the United Nations, the EU, and the US. Unsurprisingly therefore, Iran's economy and in particular its energy sector are now the subject of worldwide attention.
Resumo:
Addressing high and volatile natural resource prices, uncertain supply prospects, reindustrialization attempts and environmental damages related to resource use, resource efficiency has evolved into a highly debated proposal among academia, policy makers, firms and international financial institutions (IFIs). In 2011, the European Union (EU) declared resource efficiency as one of its seven flagship initiatives in its Europe 2020 strategy. This paper contributes to the discussions by assessing its key initiative, the Roadmap to a Resource Efficient Europe (EC 2011 571), following two streams of evaluation. In a first step, resource efficiency is linked to two theoretical frameworks regarding sustainability, (i) the sustainability triangle (consisting of economic, social and ecological dimensions) and (ii) balanced sustainability (combining weak and strong sustainability). Subsequently, both sustainability frameworks are used to assess to which degree the Roadmap follows the concept of sustainability. It can be concluded that it partially respects the sustainability triangle as well as balanced sustainability, primarily lacking a social dimension. In a second step, following Steger and Bleischwitz (2009), the impact of resource efficiency on competitiveness as advocated in the Roadmap is empirically evaluated. Using an Arellano–Bond dynamic panel data model reveals no robust impact of resource efficiency on competiveness in the EU between 2004 and 2009 – a puzzling result. Further empirical research and enhanced data availability are needed to better understand the impacts of resource efficiency on competitiveness on the macroeconomic, microeconomic and industry level. In that regard, strengthening the methodologies of resource indicators seem essential. Last but certainly not least, political will is required to achieve the transition of the EU-economy into a resource efficient future.
Resumo:
In its Communication on an Energy Union published in February 2015, the European Commission committed itself to “explore the full potential of liquefied natural gas (LNG), including as a back-up in crisis situations when insufficient gas is coming into Europe through the existing pipeline system” and to address the potential of gas storage in Europe by developing a comprehensive LNG and storage strategy by the end of 2015 or early in 2016. This is a comprehensible move in the current context. Geopolitical tensions between the EU and Russia explain the EU’s willingness to further diversify its supply sources of natural gas to reinforce its long-term energy security on the one hand, and to strengthen its ability to solve future crises on the other hand. Moreover, the current market dynamics could support diversification towards LNG. Increasing the flexibility of LNG trade, decreasing LNG prices and LNG charter rates and an apparent price convergence between the European and the Asia-Pacific LNG imports would all reinforce the economic viability of such a strategy. This Policy Brief makes three main points: • For the LNG and gas storage strategy to work, it needs to be embedded in the realities of the natural gas market. • The key to a successful LNG strategy is to develop sufficient infrastructure. • The LNG strategy needs an innovation component.
Resumo:
The start of 2016 brought highly symbolic changes to the trade policy map of Europe between the EU- and Russian-led blocs, as the EU’s Deep and Comprehensive Free Trade Area (DCFTA) with Ukraine entered into force provisionally, while Russia moved in precisely the opposite direction by scrapping its free trade agreement with Ukraine. However the ongoing changes go far wider and deeper. The energy sector and major industries see disengagement between Ukraine and Russia, and Russia’s share in Ukrainian trade is falling substantially. New transport corridors with China may offer synergies with trade opportunities for all three DCFTA states, with Georgia first in line. Visa liberalisation for the entire DCFTA space is now firmly in prospect. Divergent macroeconomic trends between a recovering eurozone and recession in Russia will accentuate the changes in trade structures. A better organisation of the pan-European economic space is surely desirable, but prospects for links between the EU and the Eurasian Economic Union remain problematic.
Resumo:
Addressing high and volatile natural resource prices, uncertain supply prospects, reindustrialization attempts and environmental damages related to resource use, resource efficiency has evolved into a highly debated proposal among academia, policy makers, firms and international financial institutions (IFIs). In 2011, the European Union (EU) declared resource efficiency as one of its seven flagship initiatives in its Europe 2020 strategy. This paper contributes to the discussions by assessing its key initiative, the Roadmap to a Resource Efficient Europe (EC 2011 571), following two streams of evaluation. In a first step, resource efficiency is linked to two theoretical frameworks regarding sustainability, (i) the sustainability triangle (consisting of economic, social and ecological dimensions) and (ii) balanced sustainability (combining weak and strong sustainability). Subsequently, both sustainability frameworks are used to assess to which degree the Roadmap follows the concept of sustainability. It can be concluded that it partially respects the sustainability triangle as well as balanced sustainability, primarily lacking a social dimension. In a second step, following Steger and Bleischwitz (2009), the impact of resource efficiency on competitiveness as advocated in the Roadmap is empirically evaluated. Using an Arellano–Bond dynamic panel data model reveals no robust impact of resource efficiency on competiveness in the EU between 2004 and 2009 – a puzzling result. Further empirical research and enhanced data availability are needed to better understand the impacts of resource efficiency on competitiveness on the macroeconomic, microeconomic and industry level. In that regard, strengthening the methodologies of resource indicators seem essential. Last but certainly not least, political will is required to achieve the transition of the EU-economy into a resource efficient future.
Resumo:
China's past economic development model has not been sustainable, at least in environmental terms. In recent years, the Chinese government has dedicated considerable time, planning energy, policy and rhetoric to "green" issues. However, there is a risk that this trend will be stalled by struggles related to pending economic problems and the upcoming leadership transition. Consequently, the international community should acknowledge China’s achievements in terms of environmental policy and cooperation as one way of serving the global public interest.
Resumo:
Real economic imbalances can lead to financial crisis. The current unsustainable use of our environment is such an imbalance. Financial shocks can be triggered by either intensified environmental policies, cleantech breakthroughs (both resulting in the stranding of unsustainable assets), or the economic costs of crossing ecological boundaries (eg floods and droughts due to climate change). Financial supervisors and risk managers have so far paid little attention to this ecological dimension, allowing systemic financial imbalances resulting from ecological pressures to build up. Inattention also leads to missed economic and financial opportunities from the sustainability transition.
Resumo:
This paper examines the policy effects of multilevel regulation in Europe. It finds that the extent to which negative integration effectively narrows the range of policy options available domestically tends to be overstated. Drawing on empirical evidence from EU-induced reform in electricity supply and postal delivery, the paper illustrates that liberalisation and institutional reorganisation may lead to relatively little policy change. Although a lack of centralised regulatory capacity at the European level is identified as a key explanatory factor for the cases studied, the findings also point to the relevance of sector specificities and the role of exogenous drivers of change.
Resumo:
Underlining the fact that shale gas, like all natural resources, can only be used once, Daniel Gros observes in this CEPS Commentary that the real issue is not whether this resource should be developed in Europe, but when it should be used: today or tomorrow? Europe is already a heavy user of gas, but its consumption is stagnating (along with its economy). Despite the hype about the shale gas revolution, the extraction cost of (onshore) conventional gas remains below that of fracking. And lots of pipelines have already been built so that the marginal cost of bringing this ‘conventional’ gas to Europe is thus rather low. Thus, from an economic and environmental point of view, Gros argues that fracking is unlikely to bring large benefits for Europe and that shale gas might just substitute for conventional gas, which is plentiful.
Resumo:
This paper explains the conflictive and cooperative elements of energy diplomacy between the European Union (EU) and Russia. It argues that interdependence forms the underlying principle of this relationship and creates both sensitivity and vulnerability for the interdependent parties, thus carrying the sperms of both conflict and cooperation. Both sides would be negatively affected by the other side’s noncooperation within the current policy framework and the prevailing mistrust and recurring tensions can be explained by this sensitivity. However, even if both sides’ policies were adjusted, vulnerability interdependence would still prevent them from seriously reducing their energy cooperation. It is necessary then to see how EU and Russian energy diplomacy can converge and how their strategic energy partnership can be cemented.
Resumo:
Being able to transport electricity seamlessly across borders is essential for achieving three major European Union energy policy goals: (1) enabling competition between national energy companies, (2) cost-effective roll-out of renewables,and (3) security of supply. However, neither the market design nor the framework for infrastructure investment proposed by the European Commission is adequate for enabling free flows of electricity within the EU.
Resumo:
The issue: The European Union's emissions trading system (ETS), introduced in 2005, is the centerpiece of EU decarbonisation efforts and the biggest emissions trading scheme in the world. After a peak in May 2008, the price of ETS carbon allowances started to collapse, and industry, civil society and policymakers began to think about how to ‘repair the ETS’. However, the ETS is an effective and efficient tool to mitigate greenhouse gas emissions, and although prices have not been stable, it has evolved to cover more sectors and greenhouse gases, and to become more robust and less distorting. Prices are depressed because of an interplay of fundamental factors and a lack of confidence in the system. Policy challenge The ETS must be stabilised by reinforcing the credibility of the system so that the use of existing low-carbon alternatives (for example burning gas instead of coal) is incentivised and investment in low-carbon assets is ensured. Further-more, failure to reinvigorate the ETS might compromise the cost-effective synchronisation of European decarbonisation efforts across sectors and countries. To restore credibility and to ensure long-term commitment to the ETS, the European Investment Bank should auction guarantees on the future emission allowance price.This will reduce the risk for low-carbon investments and enable stabilisation of the ETS until a compromise is found on structural measures to reinforce it in order to achieve the EU's long-term decarbonisation targets.
Resumo:
The question of energy security of the European Union (EU) has come high on the European political agenda since the mid-2000s as developments in the international energy sector have increasingly been perceived as a threat by the EU institutions and by the Member State governments. The externalisation of the EU’s internal energy market has in that context been presented as a means to ensure energy security. This approach, which can be called ‘post-modern’ with reference to Robert Cooper’s division of the world into different ‘ages’,1 however, shows insufficiencies in terms of energy security as a number of EU energy partners belonging to the ‘modern’ world do not accept to play the same rules. This consequently poses the questions of the relevance of the market-based approach and of the need for alternative solutions. This paper therefore argues that the market-based approach, based on the liberalisation of the European energy market, needs to be complemented by a geopolitical approach to ensure the security of the EU’s energy supplies. Such a geopolitical approach, however, still faces important challenges.
Resumo:
The most straightforward European single energy market design would entail a European system operator regulated by a single European regulator. This would ensure the predictable development of rules for the entire EU, significantly reducing regulatory uncertainty for electricity sector investments. But such a first-best market design is unlikely to be politically realistic in the European context for three reasons. First, the necessary changes compared to the current situation are substantial and would produce significant redistributive effects. Second, a European solution would deprive member states of the ability to manage their energy systems nationally. And third, a single European solution might fall short of being well-tailored to consumers’ preferences, which differ substantially across the EU. To nevertheless reap significant benefits from an integrated European electricity market, we propose the following blueprint: First, we suggest adding a European system-management layer to complement national operation centres and help them to better exchange information about the status of the system, expected changes and planned modifications. The ultimate aim should be to transfer the day-to-day responsibility for the safe and economic operation of the system to the European control centre. To further increase efficiency, electricity prices should be allowed to differ between all network points between and within countries. This would enable throughput of electricity through national and international lines to be safely increased without any major investments in infrastructure. Second, to ensure the consistency of national network plans and to ensure that they contribute to providing the infrastructure for a functioning single market, the role of the European ten year network development plan (TYNDP) needs to be upgraded by obliging national regulators to only approve projects planned at European level unless they can prove that deviations are beneficial. This boosted role of the TYNDP would need to be underpinned by resolving the issues of conflicting interests and information asymmetry. Therefore, the network planning process should be opened to all affected stakeholders (generators, network owners and operators, consumers, residents and others) and enable the European Agency for the Cooperation of Energy Regulators (ACER) to act as a welfare-maximising referee. An ultimate political decision by the European Parliament on the entire plan will open a negotiation process around selecting alternatives and agreeing compensation. This ensures that all stakeholders have an interest in guaranteeing a certain degree of balance of interest in the earlier stages. In fact, transparent planning, early stakeholder involvement and democratic legitimisation are well suited for minimising as much as possible local opposition to new lines. Third, sharing the cost of network investments in Europe is a critical issue. One reason is that so far even the most sophisticated models have been unable to identify the individual long-term net benefit in an uncertain environment. A workable compromise to finance new network investments would consist of three components: (i) all easily attributable cost should be levied on the responsible party; (ii) all network users that sit at nodes that are expected to receive more imports through a line extension should be obliged to pay a share of the line extension cost through their network charges; (iii) the rest of the cost is socialised to all consumers. Such a cost-distribution scheme will involve some intra-European redistribution from the well-developed countries (infrastructure-wise) to those that are catching up. However, such a scheme would perform this redistribution in a much more efficient way than the Connecting Europe Facility’s ad-hoc disbursements to politically chosen projects, because it would provide the infrastructure that is really needed.
Resumo:
Carbon leakage is central to the discussion on climate policy, given the confluence of issues that are currently being debated, including the 2030 Energy and Climate Framework and the review of the EU carbon leakage list by 2014. Carbon leakage is the result of asymmetrical carbon policies, especially carbon pricing, and the resulting carbon cost, which affects the international competitive position of some EU industry and could displace production and/or investment, and the emissions of the activities displaced. This paper identifies the difference between carbon price and carbon cost to leakage exposed industry as one of two fundamental issues to be understood and addressed; lack of visibility on future climate policies and anti-leakage provisions is the other key issue. While this is a global issue, most of the experience has been accumulated in the EU. Carbon leakage is only one of the factors that could affect the competitive position of sectors, but it is difficult to attribute the impact of carbon costs versus other variables such as energy costs, labour, etc. Studies have predicted the risk of a significant amount of production leakage in a number of energy-intensive industries. To address the danger, they were included in the EU ETS carbon leakage list, which gave them access to free allowances. However, a limited number of studies undertaken after the end of the second trading period (2012) show little evidence of production leakage and asks the question whether the issue has not been blown out of proportion. The paper argues that the past may not be a good representation of the future, as it was heavily influenced by a high level of free allocation, the exceptional economic downturn, CO2 prices significantly below what was anticipated, as well as the potential for changes in some fundamental variables such as the shrinking pool of allowances available for free allocation. It emphasises the need for a well-informed debate in the EU on measures to address carbon leakage post-2020, underpinned by a number of options, and objective criteria to evaluate those options. It emphasises that the debate should cover both investment and production leakage, caused by both direct and indirect carbon costs.