1 resultado para system transition matrix
em Reposit
Filtro por publicador
- JISC Information Environment Repository (1)
- Repository Napier (1)
- Academic Research Repository at Institute of Developing Economies (4)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (15)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (24)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (3)
- Archive of European Integration (8)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (31)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (28)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (202)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (29)
- Boston College Law School, Boston College (BC), United States (1)
- Brock University, Canada (7)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (11)
- CentAUR: Central Archive University of Reading - UK (34)
- Central European University - Research Support Scheme (4)
- Cochin University of Science & Technology (CUSAT), India (9)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (4)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (32)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (9)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (6)
- Digital Peer Publishing (2)
- DigitalCommons - The University of Maine Research (2)
- DigitalCommons@The Texas Medical Center (1)
- Diposit Digital de la UB - Universidade de Barcelona (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (15)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (5)
- Ecology and Society (1)
- eScholarship Repository - University of California (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Glasgow Theses Service (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico do Porto, Portugal (5)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (4)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Memorial University Research Repository (2)
- National Center for Biotechnology Information - NCBI (20)
- Nottingham eTheses (3)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (11)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (9)
- Repositório da Produção Científica e Intelectual da Unicamp (47)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório do ISCTE - Instituto Universitário de Lisboa (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (138)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (9)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Scielo Saúde Pública - SP (29)
- Scientific Open-access Literature Archive and Repository (1)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (15)
- Universidade Complutense de Madrid (3)
- Universidade do Minho (2)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universita di Parma (2)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (9)
- Université de Lausanne, Switzerland (34)
- Université de Montréal (2)
- Université de Montréal, Canada (5)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (2)
- University of Michigan (5)
- University of Queensland eSpace - Australia (42)
- University of Washington (4)
Resumo:
Matrix factorization (MF) has evolved as one of the better practice to handle sparse data in field of recommender systems. Funk singular value decomposition (SVD) is a variant of MF that exists as state-of-the-art method that enabled winning the Netflix prize competition. The method is widely used with modifications in present day research in field of recommender systems. With the potential of data points to grow at very high velocity, it is prudent to devise newer methods that can handle such data accurately as well as efficiently than Funk-SVD in the context of recommender system. In view of the growing data points, I propose a latent factor model that caters to both accuracy and efficiency by reducing the number of latent features of either users or items making it less complex than Funk-SVD, where latent features of both users and items are equal and often larger. A comprehensive empirical evaluation of accuracy on two publicly available, amazon and ml-100 k datasets reveals the comparable accuracy and lesser complexity of proposed methods than Funk-SVD.