1 resultado para latent TB
em Repositório do ISCTE - Instituto Universitário de Lisboa
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (26)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (85)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (11)
- Bioline International (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (45)
- Brock University, Canada (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (20)
- Cochin University of Science & Technology (CUSAT), India (4)
- Collection Of Biostatistics Research Archive (6)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (54)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (10)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- Duke University (4)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (4)
- Institute of Public Health in Ireland, Ireland (11)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (3)
- Instituto Politécnico do Porto, Portugal (17)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (20)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (4)
- Publishing Network for Geoscientific & Environmental Data (9)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (10)
- Repositório da Produção Científica e Intelectual da Unicamp (5)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (7)
- Repositorio de la Universidad de Cuenca (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (9)
- Repositório do ISCTE - Instituto Universitário de Lisboa (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (38)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (32)
- Scielo España (2)
- Scielo Saúde Pública - SP (206)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (7)
- Sistema UNA-SUS (17)
- South Carolina State Documents Depository (2)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (8)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (17)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Université de Lausanne, Switzerland (129)
- Université de Montréal (1)
- Université de Montréal, Canada (4)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Michigan (5)
- University of Queensland eSpace - Australia (60)
- University of Washington (3)
Resumo:
Matrix factorization (MF) has evolved as one of the better practice to handle sparse data in field of recommender systems. Funk singular value decomposition (SVD) is a variant of MF that exists as state-of-the-art method that enabled winning the Netflix prize competition. The method is widely used with modifications in present day research in field of recommender systems. With the potential of data points to grow at very high velocity, it is prudent to devise newer methods that can handle such data accurately as well as efficiently than Funk-SVD in the context of recommender system. In view of the growing data points, I propose a latent factor model that caters to both accuracy and efficiency by reducing the number of latent features of either users or items making it less complex than Funk-SVD, where latent features of both users and items are equal and often larger. A comprehensive empirical evaluation of accuracy on two publicly available, amazon and ml-100 k datasets reveals the comparable accuracy and lesser complexity of proposed methods than Funk-SVD.