1 resultado para Three Factor Model
em Repositório do ISCTE - Instituto Universitário de Lisboa
Filtro por publicador
- Academic Archive On-line (Jönköping University; Sweden) (2)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (5)
- Aston University Research Archive (32)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (17)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (64)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (61)
- Brock University, Canada (10)
- Bucknell University Digital Commons - Pensilvania - USA (5)
- CentAUR: Central Archive University of Reading - UK (39)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (37)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons at Florida International University (31)
- Digital Peer Publishing (3)
- DigitalCommons - The University of Maine Research (2)
- DigitalCommons@The Texas Medical Center (12)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (31)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (6)
- Earth Simulator Research Results Repository (2)
- Glasgow Theses Service (3)
- Harvard University (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (8)
- Instituto Superior de Psicologia Aplicada - Lisboa (9)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (33)
- Nottingham eTheses (1)
- Open University Netherlands (1)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (12)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (3)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (2)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (8)
- Repositório da Produção Científica e Intelectual da Unicamp (12)
- Repositório digital da Fundação Getúlio Vargas - FGV (25)
- Repositório do ISCTE - Instituto Universitário de Lisboa (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (81)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (8)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Scielo Saúde Pública - SP (16)
- Scientific Open-access Literature Archive and Repository (1)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (9)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (11)
- Universidad del Rosario, Colombia (12)
- Universidad Politécnica de Madrid (19)
- Universidade Complutense de Madrid (6)
- Universidade do Minho (8)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universidade Metodista de São Paulo (2)
- Universitat de Girona, Spain (2)
- Université de Lausanne, Switzerland (94)
- Université de Montréal (3)
- Université de Montréal, Canada (17)
- University of Connecticut - USA (1)
- University of Michigan (13)
- University of Queensland eSpace - Australia (58)
- University of Washington (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Matrix factorization (MF) has evolved as one of the better practice to handle sparse data in field of recommender systems. Funk singular value decomposition (SVD) is a variant of MF that exists as state-of-the-art method that enabled winning the Netflix prize competition. The method is widely used with modifications in present day research in field of recommender systems. With the potential of data points to grow at very high velocity, it is prudent to devise newer methods that can handle such data accurately as well as efficiently than Funk-SVD in the context of recommender system. In view of the growing data points, I propose a latent factor model that caters to both accuracy and efficiency by reducing the number of latent features of either users or items making it less complex than Funk-SVD, where latent features of both users and items are equal and often larger. A comprehensive empirical evaluation of accuracy on two publicly available, amazon and ml-100 k datasets reveals the comparable accuracy and lesser complexity of proposed methods than Funk-SVD.