1 resultado para Big five factor model
em Repositório do ISCTE - Instituto Universitário de Lisboa
Filtro por publicador
- Repository Napier (1)
- Academic Archive On-line (Jönköping University; Sweden) (5)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (4)
- Aston University Research Archive (23)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (66)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (5)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (49)
- Brock University, Canada (8)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- CentAUR: Central Archive University of Reading - UK (10)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (2)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (65)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (3)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (30)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (31)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (5)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Glasgow Theses Service (3)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (3)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (10)
- Instituto Superior de Psicologia Aplicada - Lisboa (10)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (8)
- National Center for Biotechnology Information - NCBI (16)
- Open Access Repository of Association for Learning Technology (ALT) (1)
- Open University Netherlands (4)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (4)
- Publishing Network for Geoscientific & Environmental Data (6)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (4)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (9)
- Repositório da Produção Científica e Intelectual da Unicamp (7)
- Repositório digital da Fundação Getúlio Vargas - FGV (24)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório do ISCTE - Instituto Universitário de Lisboa (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (24)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (21)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo Saúde Pública - SP (40)
- Scielo Uruguai (1)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (12)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (8)
- Universidad del Rosario, Colombia (20)
- Universidad Politécnica de Madrid (8)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (15)
- Universidade dos Açores - Portugal (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Metodista de São Paulo (3)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (212)
- Université de Montréal (3)
- Université de Montréal, Canada (18)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (1)
- University of Michigan (5)
- University of Queensland eSpace - Australia (61)
- University of Southampton, United Kingdom (1)
- University of Washington (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Matrix factorization (MF) has evolved as one of the better practice to handle sparse data in field of recommender systems. Funk singular value decomposition (SVD) is a variant of MF that exists as state-of-the-art method that enabled winning the Netflix prize competition. The method is widely used with modifications in present day research in field of recommender systems. With the potential of data points to grow at very high velocity, it is prudent to devise newer methods that can handle such data accurately as well as efficiently than Funk-SVD in the context of recommender system. In view of the growing data points, I propose a latent factor model that caters to both accuracy and efficiency by reducing the number of latent features of either users or items making it less complex than Funk-SVD, where latent features of both users and items are equal and often larger. A comprehensive empirical evaluation of accuracy on two publicly available, amazon and ml-100 k datasets reveals the comparable accuracy and lesser complexity of proposed methods than Funk-SVD.