2 resultados para small molecules

em Coffee Science - Universidade Federal de Lavras


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of cost-effective and reliable methods for the synthesis and separation of asymmetric compounds is paramount in helping to meet society’s ever-growing demand for chiral small molecules. Of these methods, chiral heterogeneous supports are particularly appealing as they allow for the reuse of the chiral source. One such support, based on the synergy between chiral organic units and structurally stable inorganic silicon scaffolds are periodic mesoporous organosilicas (PMOs). In the work described herein, I examine some of the factors governing the transmission of chirality between chiral dopants and prochiral bulk phases in chiral PMO materials. In particular, the exploration of 1,1’-binaphthalene-bridged chiral dopants with a focus on the point of attachment into the materials. Moreover, the effects of ordering in the materials are examined and reveal that chirality transfer is more facile in materials with molecular-scale order then those containing amorphous walls. Secondly, the issues surrounding the synthesis and purification of aryl-triethoxysilanes as siloxane precursors are addressed. Both the introduction of a two-carbon linker and the direct attachment of allyl and mixed allyldiethoxysilane species are explored. This work demonstrates that allyldiethoxysilanes are ideal, in that they are stable enough to permit facile synthesis, while still being able to hydrolyze completely to produce well-ordered materials. Lastly, the production of new bulk phases for chiral PMO materials is examined by introducing new prochiral nitrogen-containing siloxane precursors. Biphenyldiamine and bipyridine-bridged siloxane precursors are readily synthesized on reasonable scales. Their use as the bulk siloxane precursor in the production of PMO materials however, is precluded by insufficient gelation and additional siloxane precursors are necessary for the production of ordered materials. In addition to the research detailed above that forms the body of this thesis, two short works are appended. The first details the production of polythiophene assemblies mediated through coordination nanospaces, while the second explores the production of N-heterocyclic carbene functionalized gold nanoparticles through ligand exchange.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Surface patterning that occurs spontaneously during the formation of a thin film is a powerful tool for controlling film morphology at the nanoscale level because it avoids the need for further processing. However, one must first learn under which conditions these patterning phenomena occur or not, and how to achieve control over the surface morphologies that are generated. Mexylaminotriazine-based molecular glasses are small molecules that can readily form amorphous thin films. It was discovered that this class of materials can either form smooth films, or films exhibiting either dome or pore patterns. Depending on the conditions, these patterns can be selectively obtained during film deposition by spin-coating. It was determined that this behavior is controlled by the presence of water or, more generally, of a solvent in which the compounds are insoluble, and that the relative amount and volatility of this poor solvent determines which type of surface relief is obtained. Moreover, AFM and FT-IR spectroscopy have revealed that the thin films are amorphous independently of surface morphology, and no difference was observed at the molecular or supramolecular level. These findings make this class of materials and this patterning approach in general extremely appealing for the control of surface morphology with organic nanostructures.