2 resultados para potential models

em Coffee Science - Universidade Federal de Lavras


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, the origin of large-scale structures in hot star winds, believed to be responsible for the presence of discrete absorption components (DACs) in the absorption troughs of ultraviolet resonance lines, is constrained using both observations and numerical simulations. These structures are understood as arising from bright regions on the stellar surface, although their physical cause remains unknown. First, we use high quality circular spectropolarimetric observations of 13 well-studied OB stars to evaluate the potential role of dipolar magnetic fields in producing DACs. We perform longitudinal field measurements and place limits on the field strength using Bayesian inference, assuming that it is dipolar. No magnetic field was detected within this sample. The derived constraints statistically refute any significant dynamical influence from a magnetic dipole on the wind for all of these stars, ruling out such fields as a cause for DACs. Second, we perform numerical simulations using bright spots constrained by broadband optical photometric observations. We calculate hydrodynamical wind models using three sets of spot sizes and strengths. Co-rotating interaction regions are yielded in each model, and radiative transfer shows that the properties of the variations in the UV resonance lines synthesized from these models are consistent with those found in observed UV spectra, establishing the first consistent link between UV spectroscopic line profile variability and photometric variations and thus supporting the bright spot paradigm (BSP). Finally, we develop and apply a phenomenological model to quantify the measurable effects co-rotating bright spots would have on broadband optical photometry and on the profiles of photopheric lines in optical spectra. This model can be used to evaluate the existence of these spots, and, in the event of their detection, characterize them. Furthermore, a tentative spot evolution model is presented. A preliminary analysis of its output, compared to the observed photometric variations of xi Persei, suggests the possible existence of “active longitudes” on the surface of this star. Future work will expand the range of observational diagnostics that can be interpreted within the BSP, and link phenomenology (bright spots) to physical processes (magnetic spots or non-radial pulsations).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To effectively assess and mitigate risk of permafrost disturbance, disturbance-p rone areas can be predicted through the application of susceptibility models. In this study we developed regional susceptibility models for permafrost disturbances using a field disturbance inventory to test the transferability of the model to a broader region in the Canadian High Arctic. Resulting maps of susceptibility were then used to explore the effect of terrain variables on the occurrence of disturbances within this region. To account for a large range of landscape charac- teristics, the model was calibrated using two locations: Sabine Peninsula, Melville Island, NU, and Fosheim Pen- insula, Ellesmere Island, NU. Spatial patterns of disturbance were predicted with a generalized linear model (GLM) and generalized additive model (GAM), each calibrated using disturbed and randomized undisturbed lo- cations from both locations and GIS-derived terrain predictor variables including slope, potential incoming solar radiation, wetness index, topographic position index, elevation, and distance to water. Each model was validated for the Sabine and Fosheim Peninsulas using independent data sets while the transferability of the model to an independent site was assessed at Cape Bounty, Melville Island, NU. The regional GLM and GAM validated well for both calibration sites (Sabine and Fosheim) with the area under the receiver operating curves (AUROC) N 0.79. Both models were applied directly to Cape Bounty without calibration and validated equally with AUROC's of 0.76; however, each model predicted disturbed and undisturbed samples differently. Addition- ally, the sensitivity of the transferred model was assessed using data sets with different sample sizes. Results in- dicated that models based on larger sample sizes transferred more consistently and captured the variability within the terrain attributes in the respective study areas. Terrain attributes associated with the initiation of dis- turbances were similar regardless of the location. Disturbances commonly occurred on slopes between 4 and 15°, below Holocene marine limit, and in areas with low potential incoming solar radiation