1 resultado para personal learning networks
em Coffee Science - Universidade Federal de Lavras
Filtro por publicador
- Aberdeen University (2)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Stockholm University; Sweden) (2)
- Academic Research Repository at Institute of Developing Economies (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (20)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (24)
- Applied Math and Science Education Repository - Washington - USA (3)
- Archive of European Integration (3)
- Aston University Research Archive (89)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (14)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (13)
- Brock University, Canada (28)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (15)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (44)
- Central European University - Research Support Scheme (1)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Clark Digital Commons--knowledge; creativity; research; and innovation of Clark University (1)
- Cochin University of Science & Technology (CUSAT), India (3)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (64)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (6)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (21)
- Digital Peer Publishing (13)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (29)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (3)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Glasgow Theses Service (3)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (24)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (13)
- Memoria Académica - FaHCE, UNLP - Argentina (6)
- Ministerio de Cultura, Spain (25)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (2)
- Open Access Repository of Association for Learning Technology (ALT) (4)
- Open University Netherlands (6)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (13)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (6)
- Repositório da Produção Científica e Intelectual da Unicamp (11)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (24)
- Research Open Access Repository of the University of East London. (4)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (9)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (5)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (10)
- Universidad del Rosario, Colombia (12)
- Universidad Politécnica de Madrid (36)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (6)
- Universidade dos Açores - Portugal (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (6)
- Universidade Metodista de São Paulo (4)
- Universitat de Girona, Spain (26)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (28)
- Université de Montréal (2)
- Université de Montréal, Canada (16)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (2)
- University of Queensland eSpace - Australia (35)
- University of Southampton, United Kingdom (4)
- University of Washington (10)
- WestminsterResearch - UK (4)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Prostate cancer is the most common non-dermatological cancer amongst men in the developed world. The current definitive diagnosis is core needle biopsy guided by transrectal ultrasound. However, this method suffers from low sensitivity and specificity in detecting cancer. Recently, a new ultrasound based tissue typing approach has been proposed, known as temporal enhanced ultrasound (TeUS). In this approach, a set of temporal ultrasound frames is collected from a stationary tissue location without any intentional mechanical excitation. The main aim of this thesis is to implement a deep learning-based solution for prostate cancer detection and grading using TeUS data. In the proposed solution, convolutional neural networks are trained to extract high-level features from time domain TeUS data in temporally and spatially adjacent frames in nine in vivo prostatectomy cases. This approach avoids information loss due to feature extraction and also improves cancer detection rate. The output likelihoods of two TeUS arrangements are then combined to form our novel decision support system. This deep learning-based approach results in the area under the receiver operating characteristic curve (AUC) of 0.80 and 0.73 for prostate cancer detection and grading, respectively, in leave-one-patient-out cross-validation. Recently, multi-parametric magnetic resonance imaging (mp-MRI) has been utilized to improve detection rate of aggressive prostate cancer. In this thesis, for the first time, we present the fusion of mp-MRI and TeUS for characterization of prostate cancer to compensates the deficiencies of each image modalities and improve cancer detection rate. The results obtained using TeUS are fused with those attained using consolidated mp-MRI maps from multiple MR modalities and cancer delineations on those by multiple clinicians. The proposed fusion approach yields the AUC of 0.86 in prostate cancer detection. The outcomes of this thesis emphasize the viable potential of TeUS as a tissue typing method. Employing this ultrasound-based intervention, which is non-invasive and inexpensive, can be a valuable and practical addition to enhance the current prostate cancer detection.