2 resultados para pacs: expert systems and other ai software and techniques

em Coffee Science - Universidade Federal de Lavras


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The developmental histories of 32 players in the Australian Football League (AFL), independently classified as either expert or less skilled in their perceptual and decision- making skills, were collected through a structured interview process and their year-on-year involvement in structured and deliberate play activities retrospectively determined. Despite being drawn from the same elite level of competition, the expert decision-makers differed from the less skilled in having accrued, during their developing years, more hours of experience in structured activities of all types, in structured activities in invasion-type sports, in invasion-type deliberate play, and in invasion activities from sports other than Australian football. Accumulated hours invested in invasion-type activities differentiated between the groups, suggesting that it is the amount of invasion-type activity that is experienced and not necessarily intent (skill development or fun) or specificity that facilitates the development of perceptual and decision-making expertise in this team sport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar heating of potable water has traditionally been accomplished through the use of solar thermal (ST) collectors. With the recent increases in availability and lower cost of photovoltaic (PV) panels, the potential of coupling PV solar arrays to electrically heated domestic hot water (DHW) tanks has been considered. Additionally, innovations in the SDHW industry have led to the creation of photovoltaic/thermal (PV/T) collectors, which heat water using both electrical and thermal energy. The current work compared the performance and cost-effectiveness of a traditional solar thermal (ST) DHW system to PV-solar-electric DHW systems and a PV/T DHW system. To accomplish this, a detailed TRNSYS model of the solar hot water systems was created and annual simulations were performed for 250 L/day and 325 L/day loads in Toronto, Vancouver, Montreal, Halifax, and Calgary. It was shown that when considering thermal performance, PV-DHW systems were not competitive when compared to ST-DHW and PVT-DHW systems. As an example, for Toronto the simulated annual solar fractions of PV-DHW systems were approximately 30%, while the ST-DHW and PVT-DHW systems achieved 65% and 71% respectively. With current manufacturing and system costs, the PV-DHW system was the most cost-effective system for domestic purposes. The capital cost of the PV-DHW systems were approximately $1,923-$2,178 depending on the system configuration, and the ST-DHW and PVT system were estimated to have a capital cost of $2,288 and $2,373 respectively. Although the capital cost of the PVT-DHW system was higher than the other systems, a Present Worth analysis for a 20-year period showed that for a 250 L/day load in Toronto the Present Worth of the PV/T system was approximately $4,597, with PV-DHW systems costing approximately $7,683-$7,816 and the ST-DHW system costing $5,238.