1 resultado para pH sensing

em Coffee Science - Universidade Federal de Lavras


Relevância:

30.00% 30.00%

Publicador:

Resumo:

As human populations and resource consumption increase, it is increasingly important to monitor the quality of our environment. While laboratory instruments offer useful information, portable, easy to use sensors would allow environmental analysis to occur on-site, at lower cost, and with minimal operator training. We explore the synthesis, modification, and applications of modified polysiloxane in environmental sensing. Multiple methods of producing modified siloxanes were investigated. Oligomers were formed by using functionalized monomers, producing siloxane materials containing silicon hydride, methyl, and phenyl side chains. Silicon hydride-functionalized oligomers were further modified by hydrosilylation to incorporate methyl ester and naphthyl side chains. Modifications to the siloxane materials were also carried out using post-curing treatments. Methyl ester-functionalized siloxane was incorporated into the surface of a cured poly(dimethylsiloxane) film by siloxane equilibration. The materials containing methyl esters were hydrolyzed to reveal carboxylic acids, which could later be used for covalent protein immobilization. Finally, the siloxane surfaces were modified to incorporate antibodies by covalent, affinity, and adsorption-based attachment. These modifications were characterized by a variety of methods, including contact angle, attenuated total reflectance Fourier transform infrared spectroscopy, dye labels, and 1H nuclear magnetic resonance spectroscopy. The modified siloxane materials were employed in a variety of sensing schemes. Volatile organic compounds were detected using methyl, phenyl, and naphthyl-functionalized materials on a Fabry-Perot interferometer and a refractometer. The Fabry-Perot interferometer was found to detect the analytes upon siloxane extraction by deformation of the Bragg reflectors. The refractometer was used to determine that naphthyl-functionalized siloxanes had elevated refractive indices, rendering these materials more sensitive to some analytes. Antibody-modified siloxanes were used to detect biological analytes through a solid phase microextraction-mediated enzyme linked immunosorbent assay (SPME ELISA). The SPME ELISA was found to have higher analyte sensitivity compared to a conventional ELISA system. The detection scheme was used to detect Escherichia coli at 8500 CFU/mL. These results demonstrate the variety of methods that can be used to modify siloxanes and the wide range of applications of modified siloxanes has been demonstrated through chemical and biological sensing schemes.