3 resultados para gap, minproblem, algoritmi, esatti, lower, bound, posta
em Coffee Science - Universidade Federal de Lavras
Resumo:
In a paper by Biro et al. [7], a novel twist on guarding in art galleries is introduced. A beacon is a fixed point with an attraction pull that can move points within the polygon. Points move greedily to monotonically decrease their Euclidean distance to the beacon by moving straight towards the beacon or sliding on the edges of the polygon. The beacon attracts a point if the point eventually reaches the beacon. Unlike most variations of the art gallery problem, the beacon attraction has the intriguing property of being asymmetric, leading to separate definitions of attraction region and inverse attraction region. The attraction region of a beacon is the set of points that it attracts. For a given point in the polygon, the inverse attraction region is the set of beacon locations that can attract the point. We first study the characteristics of beacon attraction. We consider the quality of a "successful" beacon attraction and provide an upper bound of $\sqrt{2}$ on the ratio between the length of the beacon trajectory and the length of the geodesic distance in a simple polygon. In addition, we provide an example of a polygon with holes in which this ratio is unbounded. Next we consider the problem of computing the shortest beacon watchtower in a polygonal terrain and present an $O(n \log n)$ time algorithm to solve this problem. In doing this, we introduce $O(n \log n)$ time algorithms to compute the beacon kernel and the inverse beacon kernel in a monotone polygon. We also prove that $\Omega(n \log n)$ time is a lower bound for computing the beacon kernel of a monotone polygon. Finally, we study the inverse attraction region of a point in a simple polygon. We present algorithms to efficiently compute the inverse attraction region of a point for simple, monotone, and terrain polygons with respective time complexities $O(n^2)$, $O(n \log n)$ and $O(n)$. We show that the inverse attraction region of a point in a simple polygon has linear complexity and the problem of computing the inverse attraction region has a lower bound of $\Omega(n \log n)$ in monotone polygons and consequently in simple polygons.
Resumo:
This research develops an econometric framework to analyze time series processes with bounds. The framework is general enough that it can incorporate several different kinds of bounding information that constrain continuous-time stochastic processes between discretely-sampled observations. It applies to situations in which the process is known to remain within an interval between observations, by way of either a known constraint or through the observation of extreme realizations of the process. The main statistical technique employs the theory of maximum likelihood estimation. This approach leads to the development of the asymptotic distribution theory for the estimation of the parameters in bounded diffusion models. The results of this analysis present several implications for empirical research. The advantages are realized in the form of efficiency gains, bias reduction and in the flexibility of model specification. A bias arises in the presence of bounding information that is ignored, while it is mitigated within this framework. An efficiency gain arises, in the sense that the statistical methods make use of conditioning information, as revealed by the bounds. Further, the specification of an econometric model can be uncoupled from the restriction to the bounds, leaving the researcher free to model the process near the bound in a way that avoids bias from misspecification. One byproduct of the improvements in model specification is that the more precise model estimation exposes other sources of misspecification. Some processes reveal themselves to be unlikely candidates for a given diffusion model, once the observations are analyzed in combination with the bounding information. A closer inspection of the theoretical foundation behind diffusion models leads to a more general specification of the model. This approach is used to produce a set of algorithms to make the model computationally feasible and more widely applicable. Finally, the modeling framework is applied to a series of interest rates, which, for several years, have been constrained by the lower bound of zero. The estimates from a series of diffusion models suggest a substantial difference in estimation results between models that ignore bounds and the framework that takes bounding information into consideration.
Resumo:
Thesis (Master, Community Health & Epidemiology) -- Queen's University, 2016-10-02 21:02:07.735