2 resultados para decoupling

em Coffee Science - Universidade Federal de Lavras


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Greater Himalayan leucogranites are a discontinuous suite of intrusions emplaced in a thickened crust during the Miocene southward ductile extrusion of the Himalayan metamorphic core. Melt-induced weakening is thought to have played a critical role in strain localization that facilitated the extrusion. Recent advancements in centrifuge analogue modelling techniques allow for the replication of a broader range of crustal deformation behaviors, enhancing our understanding of large hot orogens. Polydimethylsiloxane (PDMS) is commonly used in centrifuge experiments to model weak melt zones. Difficulties in handling PDMS had, until now, limited its emplacement in models prior to any deformation. A new modelling technique has been developed where PDMS is emplaced into models that have been subjected to some shortening. This technique aims to better understand the effects of melt on strain localization and potential decoupling between structural levels within an evolving orogenic system. Models are subjected to an early stage of shortening, followed by the introduction of PDMS, and then a final stage of shortening. Theoretical percentages of partial melt and their effect on rock strength are considered when adding a specific percentage of PDMS in each model. Due to the limited size of the models, only PDMS sheets of 3 mm thickness were used, which varied in length and width. Within undeformed packages, minimal surface and internal deformation occurred when PDMS is emplaced in the lower layer of the model, showing a vertical volume increase of ~20% within the package; whereas the emplacement of PDMS into the middle layer showed internal dragging of the middle laminations into the lower layer and a vertical volume increase ~30%. Emplacement of PDMS results in ~7% shortening for undeformed and deformed models. Deformed models undergo ~20% additional shortening after two rounds of deformation. Strain localization and decoupling between units occur in deformed models where the degree of deformation changes based on the amount of partial melt present. Surface deformation visible by the formation of a bulge, mode 1 extension cracks and varying surface strain ellipses varies depending if PDMS is present. Better control during emplacement is exhibited when PDMS is added into cooler models, resulting in reduced internal deformation within the middle layer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A subfilter-scale (SFS) stress model is developed for large-eddy simulations (LES) and is tested on various benchmark problems in both wall-resolved and wall-modelled LES. The basic ingredients of the proposed model are the model length-scale, and the model parameter. The model length-scale is defined as a fraction of the integral scale of the flow, decoupled from the grid. The portion of the resolved scales (LES resolution) appears as a user-defined model parameter, an advantage that the user decides the LES resolution. The model parameter is determined based on a measure of LES resolution, the SFS activity. The user decides a value for the SFS activity (based on the affordable computational budget and expected accuracy), and the model parameter is calculated dynamically. Depending on how the SFS activity is enforced, two SFS models are proposed. In one approach the user assigns the global (volume averaged) contribution of SFS to the transport (global model), while in the second model (local model), SFS activity is decided locally (locally averaged). The models are tested on isotropic turbulence, channel flow, backward-facing step and separating boundary layer. In wall-resolved LES, both global and local models perform quite accurately. Due to their near-wall behaviour, they result in accurate prediction of the flow on coarse grids. The backward-facing step also highlights the advantage of decoupling the model length-scale from the mesh. Despite the sharply refined grid near the step, the proposed SFS models yield a smooth, while physically consistent filter-width distribution, which minimizes errors when grid discontinuity is present. Finally the model application is extended to wall-modelled LES and is tested on channel flow and separating boundary layer. Given the coarse resolution used in wall-modelled LES, near the wall most of the eddies become SFS and SFS activity is required to be locally increased. The results are in very good agreement with the data for the channel. Errors in the prediction of separation and reattachment are observed in the separated flow, that are somewhat improved with some modifications to the wall-layer model.