1 resultado para decision support system
em Coffee Science - Universidade Federal de Lavras
Filtro por publicador
- Aberdeen University (3)
- Abertay Research Collections - Abertay University’s repository (2)
- Aberystwyth University Repository - Reino Unido (2)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- Aquatic Commons (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archive of European Integration (14)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (64)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (34)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (18)
- Cambridge University Engineering Department Publications Database (26)
- CentAUR: Central Archive University of Reading - UK (50)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (8)
- Cochin University of Science & Technology (CUSAT), India (2)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (7)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (7)
- CUNY Academic Works (6)
- Dalarna University College Electronic Archive (7)
- Department of Computer Science E-Repository - King's College London, Strand, London (5)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (11)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (8)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (10)
- Ecology and Society (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (11)
- FUNDAJ - Fundação Joaquim Nabuco (3)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (14)
- Institutional Repository of Leibniz University Hannover (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico de Bragança (2)
- Instituto Politécnico de Castelo Branco - Portugal (1)
- Instituto Politécnico do Porto, Portugal (29)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (9)
- Open University Netherlands (1)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (29)
- Queensland University of Technology - ePrints Archive (170)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (20)
- Repositorio de la Universidad de Cuenca (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (18)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (1)
- Scielo España (1)
- South Carolina State Documents Depository (1)
- Universidad de Alicante (4)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (38)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade dos Açores - Portugal (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universitat de Girona, Spain (13)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Montréal, Canada (3)
- University of Michigan (19)
- University of Queensland eSpace - Australia (22)
- University of Southampton, United Kingdom (1)
- University of Washington (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Prostate cancer is the most common non-dermatological cancer amongst men in the developed world. The current definitive diagnosis is core needle biopsy guided by transrectal ultrasound. However, this method suffers from low sensitivity and specificity in detecting cancer. Recently, a new ultrasound based tissue typing approach has been proposed, known as temporal enhanced ultrasound (TeUS). In this approach, a set of temporal ultrasound frames is collected from a stationary tissue location without any intentional mechanical excitation. The main aim of this thesis is to implement a deep learning-based solution for prostate cancer detection and grading using TeUS data. In the proposed solution, convolutional neural networks are trained to extract high-level features from time domain TeUS data in temporally and spatially adjacent frames in nine in vivo prostatectomy cases. This approach avoids information loss due to feature extraction and also improves cancer detection rate. The output likelihoods of two TeUS arrangements are then combined to form our novel decision support system. This deep learning-based approach results in the area under the receiver operating characteristic curve (AUC) of 0.80 and 0.73 for prostate cancer detection and grading, respectively, in leave-one-patient-out cross-validation. Recently, multi-parametric magnetic resonance imaging (mp-MRI) has been utilized to improve detection rate of aggressive prostate cancer. In this thesis, for the first time, we present the fusion of mp-MRI and TeUS for characterization of prostate cancer to compensates the deficiencies of each image modalities and improve cancer detection rate. The results obtained using TeUS are fused with those attained using consolidated mp-MRI maps from multiple MR modalities and cancer delineations on those by multiple clinicians. The proposed fusion approach yields the AUC of 0.86 in prostate cancer detection. The outcomes of this thesis emphasize the viable potential of TeUS as a tissue typing method. Employing this ultrasound-based intervention, which is non-invasive and inexpensive, can be a valuable and practical addition to enhance the current prostate cancer detection.