1 resultado para classification and regression trees
em Coffee Science - Universidade Federal de Lavras
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (2)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (11)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- ANIMAL PRODUCTION JOURNAL (1)
- Aquatic Commons (11)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (4)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (24)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (2)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (20)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (8)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- Biodiversity Heritage Library, United States (2)
- Bioline International (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (54)
- Boston University Digital Common (4)
- Brock University, Canada (5)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- Cambridge University Engineering Department Publications Database (14)
- CentAUR: Central Archive University of Reading - UK (24)
- Center for Jewish History Digital Collections (2)
- Centro Hospitalar do Porto (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (26)
- Cochin University of Science & Technology (CUSAT), India (7)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (7)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Dalarna University College Electronic Archive (3)
- Digital Commons - Michigan Tech (3)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (16)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (8)
- DigitalCommons@University of Nebraska - Lincoln (4)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (10)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (21)
- Hospitais da Universidade de Coimbra (1)
- Indian Institute of Science - Bangalore - Índia (24)
- Instituto Politécnico do Porto, Portugal (6)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (8)
- Open University Netherlands (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- Portal de Revistas Científicas Complutenses - Espanha (5)
- Publishing Network for Geoscientific & Environmental Data (37)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (50)
- Queensland University of Technology - ePrints Archive (120)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (3)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade Federal de Goiás - UFG (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (68)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (2)
- South Carolina State Documents Depository (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (7)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (18)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universidade Técnica de Lisboa (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (4)
- Université de Montréal, Canada (5)
- University of Connecticut - USA (1)
- University of Michigan (61)
- University of Queensland eSpace - Australia (14)
- University of Southampton, United Kingdom (1)
- University of Washington (6)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (4)
Resumo:
Security defects are common in large software systems because of their size and complexity. Although efficient development processes, testing, and maintenance policies are applied to software systems, there are still a large number of vulnerabilities that can remain, despite these measures. Some vulnerabilities stay in a system from one release to the next one because they cannot be easily reproduced through testing. These vulnerabilities endanger the security of the systems. We propose vulnerability classification and prediction frameworks based on vulnerability reproducibility. The frameworks are effective to identify the types and locations of vulnerabilities in the earlier stage, and improve the security of software in the next versions (referred to as releases). We expand an existing concept of software bug classification to vulnerability classification (easily reproducible and hard to reproduce) to develop a classification framework for differentiating between these vulnerabilities based on code fixes and textual reports. We then investigate the potential correlations between the vulnerability categories and the classical software metrics and some other runtime environmental factors of reproducibility to develop a vulnerability prediction framework. The classification and prediction frameworks help developers adopt corresponding mitigation or elimination actions and develop appropriate test cases. Also, the vulnerability prediction framework is of great help for security experts focus their effort on the top-ranked vulnerability-prone files. As a result, the frameworks decrease the number of attacks that exploit security vulnerabilities in the next versions of the software. To build the classification and prediction frameworks, different machine learning techniques (C4.5 Decision Tree, Random Forest, Logistic Regression, and Naive Bayes) are employed. The effectiveness of the proposed frameworks is assessed based on collected software security defects of Mozilla Firefox.