3 resultados para bake-hardening
em Coffee Science - Universidade Federal de Lavras
Resumo:
Peroxide-mediated reactive extrusion of linear isotactic polypropylene (L-PP) was conducted in the presence of trimethylolpropane trimethacrylate (TMPTMA) and triallyl trimesate (TAM) coagents, using a twin screw extruder. The resulting coagent-modified polypropylenes (CM-PP) had higher viscosities and elasticities, as well as increased crystallization temperature compared to PP reacted only with peroxide (DCP-PP). Additionally, deviations from terminal flow, and strain hardening were observed in PP modified with TAM, signifying the presence of long chain branching (LCB). The CM-PP formulations retained the modulus and tensile strength of the parent L-PP, in spite of their lower molar mass and viscosities, whereas their elongation at break and the impact strength were better. This was attributed to the finer spherulitic structure of these materials, and to the disappearance of the skin-core layer in the injection molded specimens.
Resumo:
Temperature has profound effects on the neural function and behaviour of insects. When exposed to low temperature, migratory locusts (Locusta migratoria) enter chill coma (neuromuscular paralysis) and can resume normal body functions after returning to normal temperature. Our laboratory has studied phenomena underlying environmental stress-induced comas in locusts and found that they are associated with a sudden loss of K+ homeostasis and also a temporary electrical silence in the central nervous system (CNS). However, the mechanisms underlying chill coma entry and recovery are not well understood, particularly the role of the CNS has not been determined. Here, I investigated neural function during chill coma in the locust by measuring electrical activity in the CNS. As pre-exposure to moderately low temperatures, either chronically (cold acclimation) or acutely (rapid cold hardening; RCH), has been found to improve the insect’s cold tolerance, I also determined cold acclimation and RCH protocols that will improve the locust's cold tolerance and whether these protocols affect neural shutdown during chill coma in the locust. With an implanted thermocouple in the thorax, I determined the temperature associated with a loss of responsiveness (CTmin) in intact male adult locusts. In parallel experiments, I recorded field potential (FP) in the metathoracic ganglion (MTG) in semi-intact preparations to determine the temperature that would induce neural shutdown. I found that acclimation at 10 ˚C and RCH at 4 ˚C reduced chill coma recovery time (CCRT) in intact animal preparations and RCH at 4 ˚C for 4 hours reduced the temperature at neural shutdown in semi-intact preparations. These results suggest that pre-exposure to cold can improve the locust's resistance to chill coma and support the notion that the CNS has a role in determining entry into and exit from chill coma in locusts.
Resumo:
Despite the development of improved performance test protocols by renowned researchers, there are still road networks which experience premature cracking and failure. One area of major concern in asphalt science and technology, especially in cold regions in Canada is thermal (low temperature) cracking. Usually right after winter periods, severe cracks are seen on poorly designed road networks. Quality assurance tests based on improved asphalt performance protocols have been implemented by government agencies to ensure that roads being constructed are at the required standard but asphalt binders that pass these quality assurance tests still crack prematurely. While it would be easy to question the competence of the quality assurance test protocols, it should be noted that performance tests which are being used and were repeated in this study, namely the extended bending beam rheometer (EBBR) test, double edge-notched tension test (DENT), dynamic shear rheometer (DSR) test and X-ray fluorescence (XRF) analysis have all been verified and proven to successfully predict asphalt pavement behaviour in the field. Hence this study looked to probe and test the quality and authenticity of the asphalt binders being used for road paving. This study covered thermal cracking and physical hardening phenomenon by comparing results from testing asphalt binder samples obtained from the storage ‘tank’ prior to paving (tank samples) and recovered samples for the same contracts with aim of explaining why asphalt binders that have passed quality assurance tests are still prone to fail prematurely. The study also attempted to find out if the short testing time and automated procedure of torsion bar experiments can replace the established but tedious procedure of the EBBR. In the end, it was discovered that significant differences in performance and composition exist between tank and recovered samples for the same contracts. Torsion bar experimental data also indicated some promise in predicting physical hardening.