2 resultados para Unbounded orbits
em Coffee Science - Universidade Federal de Lavras
Resumo:
Purpose: Custom cranio-orbital implants have been shown to achieve better performance than their hand-shaped counterparts by restoring skull anatomy more accurately and by reducing surgery time. Designing a custom implant involves reconstructing a model of the patient's skull using their computed tomography (CT) scan. The healthy side of the skull model, contralateral to the damaged region, can then be used to design an implant plan. Designing implants for areas of thin bone, such as the orbits, is challenging due to poor CT resolution of bone structures. This makes preoperative design time-intensive since thin bone structures in CT data must be manually segmented. The objective of this thesis was to research methods to accurately and efficiently design cranio-orbital implant plans, with a focus on the orbits, and to develop software that integrates these methods. Methods: The software consists of modules that use image and surface restoration approaches to enhance both the quality of CT data and the reconstructed model. It enables users to input CT data, and use tools to output a skull model with restored anatomy. The skull model can then be used to design the implant plan. The software was designed using 3D Slicer, an open-source medical visualization platform. It was tested on CT data from thirteen patients. Results: The average time it took to create a skull model with restored anatomy using our software was 0.33 hours ± 0.04 STD. In comparison, the design time of the manual segmentation method took between 3 and 6 hours. To assess the structural accuracy of the reconstructed models, CT data from the thirteen patients was used to compare the models created using our software with those using the manual method. When registering the skull models together, the difference between each set of skulls was found to be 0.4 mm ± 0.16 STD. Conclusions: We have developed a software to design custom cranio-orbital implant plans, with a focus on thin bone structures. The method described decreases design time, and is of similar accuracy to the manual method.
Resumo:
In a paper by Biro et al. [7], a novel twist on guarding in art galleries is introduced. A beacon is a fixed point with an attraction pull that can move points within the polygon. Points move greedily to monotonically decrease their Euclidean distance to the beacon by moving straight towards the beacon or sliding on the edges of the polygon. The beacon attracts a point if the point eventually reaches the beacon. Unlike most variations of the art gallery problem, the beacon attraction has the intriguing property of being asymmetric, leading to separate definitions of attraction region and inverse attraction region. The attraction region of a beacon is the set of points that it attracts. For a given point in the polygon, the inverse attraction region is the set of beacon locations that can attract the point. We first study the characteristics of beacon attraction. We consider the quality of a "successful" beacon attraction and provide an upper bound of $\sqrt{2}$ on the ratio between the length of the beacon trajectory and the length of the geodesic distance in a simple polygon. In addition, we provide an example of a polygon with holes in which this ratio is unbounded. Next we consider the problem of computing the shortest beacon watchtower in a polygonal terrain and present an $O(n \log n)$ time algorithm to solve this problem. In doing this, we introduce $O(n \log n)$ time algorithms to compute the beacon kernel and the inverse beacon kernel in a monotone polygon. We also prove that $\Omega(n \log n)$ time is a lower bound for computing the beacon kernel of a monotone polygon. Finally, we study the inverse attraction region of a point in a simple polygon. We present algorithms to efficiently compute the inverse attraction region of a point for simple, monotone, and terrain polygons with respective time complexities $O(n^2)$, $O(n \log n)$ and $O(n)$. We show that the inverse attraction region of a point in a simple polygon has linear complexity and the problem of computing the inverse attraction region has a lower bound of $\Omega(n \log n)$ in monotone polygons and consequently in simple polygons.