2 resultados para Stochastic dynamic programming (SDP)

em Coffee Science - Universidade Federal de Lavras


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates the design of optimal tax systems in dynamic environments. The first essay characterizes the optimal tax system where wages depend on stochastic shocks and work experience. In addition to redistributive and efficiency motives, the taxation of inexperienced workers depends on a second-best requirement that encourages work experience, a social insurance motive and incentive effects. Calibrations using U.S. data yield higher expected optimal marginal income tax rates for experienced workers for most of the inexperienced workers. They confirm that the average marginal income tax rate increases (decreases) with age when shocks and work experience are substitutes (complements). Finally, more variability in experienced workers' earnings prospects leads to increasing tax rates since income taxation acts as a social insurance mechanism. In the second essay, the properties of an optimal tax system are investigated in a dynamic private information economy where labor market frictions create unemployment that destroys workers' human capital. A two-skill type model is considered where wages and employment are endogenous. I find that the optimal tax system distorts the first-period wages of all workers below their efficient levels which leads to more employment. The standard no-distortion-at-the-top result no longer holds due to the combination of private information and the destruction of human capital. I show this result analytically under the Maximin social welfare function and confirm it numerically for a general social welfare function. I also investigate the use of a training program and job creation subsidies. The final essay analyzes the optimal linear tax system when there is a population of individuals whose perceptions of savings are linked to their disposable income and their family background through family cultural transmission. Aside from the standard equity/efficiency trade-off, taxes account for the endogeneity of perceptions through two channels. First, taxing labor decreases income, which decreases the perception of savings through time. Second, taxation on savings corrects for the misperceptions of workers and thus savings and labor decisions. Numerical simulations confirm that behavioral issues push labor income taxes upward to finance saving subsidies. Government transfers to individuals are also decreased to finance those same subsidies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Process systems design, operation and synthesis problems under uncertainty can readily be formulated as two-stage stochastic mixed-integer linear and nonlinear (nonconvex) programming (MILP and MINLP) problems. These problems, with a scenario based formulation, lead to large-scale MILPs/MINLPs that are well structured. The first part of the thesis proposes a new finitely convergent cross decomposition method (CD), where Benders decomposition (BD) and Dantzig-Wolfe decomposition (DWD) are combined in a unified framework to improve the solution of scenario based two-stage stochastic MILPs. This method alternates between DWD iterations and BD iterations, where DWD restricted master problems and BD primal problems yield a sequence of upper bounds, and BD relaxed master problems yield a sequence of lower bounds. A variant of CD, which includes multiple columns per iteration of DW restricted master problem and multiple cuts per iteration of BD relaxed master problem, called multicolumn-multicut CD is then developed to improve solution time. Finally, an extended cross decomposition method (ECD) for solving two-stage stochastic programs with risk constraints is proposed. In this approach, a CD approach at the first level and DWD at a second level is used to solve the original problem to optimality. ECD has a computational advantage over a bilevel decomposition strategy or solving the monolith problem using an MILP solver. The second part of the thesis develops a joint decomposition approach combining Lagrangian decomposition (LD) and generalized Benders decomposition (GBD), to efficiently solve stochastic mixed-integer nonlinear nonconvex programming problems to global optimality, without the need for explicit branch and bound search. In this approach, LD subproblems and GBD subproblems are systematically solved in a single framework. The relaxed master problem obtained from the reformulation of the original problem, is solved only when necessary. A convexification of the relaxed master problem and a domain reduction procedure are integrated into the decomposition framework to improve solution efficiency. Using case studies taken from renewable resource and fossil-fuel based application in process systems engineering, it can be seen that these novel decomposition approaches have significant benefit over classical decomposition methods and state-of-the-art MILP/MINLP global optimization solvers.