3 resultados para Shoulder harnesses.

em Coffee Science - Universidade Federal de Lavras


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been a significant increase in the incidence of musculoskeletal disorders (MSD) and the costs associated with these are predicted to increase as the popularity of computer use increases at home, school and work. Risk factors have been identified in the adult population but little is known about the risk factors for children and youth. Research has demonstrated that they are not immune to this risk and that they are self reporting the same pain as adults. The purpose of the study was to examine children’s postures while working at computer workstations under two conditions. One was at an ergonomically adjusted children’s workstation while the second was at an average adult workstation. A Polhemus Fastrak™ system was used to record the children’s postures and joint and segment angles were quantified. Results of the study showed that children reported more discomfort and effort at the adult workstation. Segment and joint angles showed significant differences through the upper limb at the adult workstation. Of significance was the strategy of shoulder abduction and flexion that the children used in order to place their hand on the mouse. Ulnar deviation was also greater at the adult workstation as was neck extension. All of these factors have been identified in the literature as increasing the risk for injury. A comparison of the children’s posture while playing at the children’s workstation verses the adult workstation, showed that the postural angles assumed by the children at an adult workstation exceeded the Occupational Safety and Health Association (OSHA) recommendations. Further investigation is needed to increase our knowledge of MSD in children as their potential for long term damage has yet to be determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sport of rowing has become more popular in the past decade. While it is a relatively low impact sport, injuries can occur, specifically to the ribs (Karlson K. A., 1998) and more often in female athletes (Hickey, Fricker, & McDonald , 1997). It has been proposed that as the athlete rows, applying a cyclical load to the body, the mid trapezius fatigues and is unable to resist the force produced during the drive phase (Warden S. J., Gutschlag, Wajswelner, & Crossley, 2002). Once this happens, the scapulae are then pulled anterio-laterally which increases the compression force on the ribs, increasing the risk of injury. The rowing motion of 12 female varsity and club rowers was tracked as they completed a fatiguing rowing test on a rowing ergometer. Results showed that the curvature of thoracic spine changed throughout the rowing cycle but did not change with increasing power level. The transverse shoulder angle decreased (the upper back was less straight) as power level increased (R2=-0.69±19), suggesting that the scapula moved anterio-laterally. This may be that as it tired, the mid-trapezius was unable to hold the scapulae in position. The decreasing transverse shoulder angle when the power level is increased indirectly supports the fatiguing of the retractor muscles as a mechanism of injury. It would be valuable to understand the limitations of each athlete and to be able to prescribe the optimal training zone to reduce the risk of injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stroke is a prevalent disorder with immense socioeconomic impact. A variety of chronic neurological deficits result from stroke. In particular, sensorimotor deficits are a significant barrier to achieving post-stroke independence. Unfortunately, the majority of pre-clinical studies that show improved outcomes in animal stroke models have failed in clinical trials. Pre-clinical studies using non-human primate (NHP) stroke models prior to initiating human trials are a potential step to improving translation from animal studies to clinical trials. Robotic assessment tools represent a quantitative, reliable, and reproducible means to assess reaching behaviour following stroke in both humans and NHPs. We investigated the use of robotic technology to assess sensorimotor impairments in NHPs following middle cerebral artery occlusion (MCAO). Two cynomolgus macaques underwent transient MCAO for 90 minutes. Approximately 1.5 years following the procedure these NHPs and two non-stroke control monkeys were trained in a reaching task with both arms in the KINARM exoskeleton. This robot permits elbow and shoulder movements in the horizontal plane. The task required NHPs to make reaching movements from a centrally positioned start target to 1 of 8 peripheral targets uniformly distributed around the first target. We analyzed four movement parameters: reaction time, movement time (MT), initial direction error (IDE), and number of speed maxima to characterize sensorimotor deficiencies. We hypothesized reduced performance in these attributes during a neurobehavioural task with the paretic limb of NHPs following MCAO compared to controls. Reaching movements in the non-affected limbs of control and experimental NHPs showed bell-shaped velocity profiles. In contrast, the reaching movements with the affected limbs were highly variable. We found distinctive patterns in MT, IDE, and number of speed peaks between control and experimental monkeys and between limbs of NHPs with MCAO. NHPs with MCAO demonstrated more speed peaks, longer MTs, and greater IDE in their paretic limb compared to controls. These initial results qualitatively match human stroke subjects’ performance, suggesting that robotic neurobehavioural assessment in NHPs with stroke is feasible and could have translational relevance in subsequent human studies. Further studies will be necessary to replicate and expand on these preliminary findings.