1 resultado para Rope
em Coffee Science - Universidade Federal de Lavras
Resumo:
The objective of this thesis is to explore new and improved methods for greater sample introduction efficiency and enhanced analytical performance with inductively coupled plasma optical emission spectrometry (ICP-OES). Three projects are discussed in which the capabilities and applications of ICP-OES are expanded: 1. In the first project, a conventional ultrasonic nebuliser was modified to replace the heater/condenser with an infrared heated pre-evaporation tube. In continuation from previous works with pre-evaporation, the current work investigated the effects of heating with infrared block and rope heaters on two different ICP-OES instruments. Comparisons were made between several methods and setups in which temperatures were varied. By monitoring changes to sensitivity, detection limit, precision, and robustness, and analyzing two certified reference materials, a method with improved sample introduction efficiency and comparable analytical performance to a previous method was established. 2. The second project involved improvements to a previous work in which a multimode sample introduction system (MSIS) was modified by inserting a pre-evaporation tube between the MSIS and torch. The new work focused on applying an infrared heated ceramic rope for pre-evaporation. This research was conducted in all three MSIS modes (nebulisation mode, hydride generation mode, and dual mode) and on two different ICP-OES instruments, and comparisons were made between conventional setups in terms of sensitivity, detection limit, precision, and robustness. By tracking both hydride-forming and non-hydride forming elements, the effects of heating in combination with hydride generation were probed. Finally, optimal methods were validated by analysis of two certified reference materials. 3. A final project was completed in collaboration with ZincNyx Energy Solutions. This project sought to develop a method for the overall analysis of a 12 M KOH zincate fuel, which is used in green energy backup systems. By employing various techniques including flow injection analysis and standard additions, a final procedure was formulated for the verification of K concentration, as well as the measurement of additives (Al, Fe, Mg, In, Si), corrosion products (such C from CO₃²¯), and Zn particles both in and filtered from solution. Furthermore, the effects of exposing the potassium zincate electrolyte fuel to air were assessed.