2 resultados para Potential theory (Mathematics).
em Coffee Science - Universidade Federal de Lavras
Resumo:
The integration of mathematics and science in secondary schools in the 21st century continues to be an important topic of practice and research. The purpose of my research study, which builds on studies by Frykholm and Glasson (2005) and Berlin and White (2010), is to explore the potential constraints and benefits of integrating mathematics and science in Ontario secondary schools based on the perspectives of in-service and pre-service teachers with various math and/or science backgrounds. A qualitative and quantitative research design with an exploratory approach was used. The qualitative data was collected from a sample of 12 in-service teachers with various math and/or science backgrounds recruited from two school boards in Eastern Ontario. The quantitative and some qualitative data was collected from a sample of 81 pre-service teachers from the Queen’s University Bachelor of Education (B.Ed) program. Semi-structured interviews were conducted with the in-service teachers while a survey and a focus group was conducted with the pre-service teachers. Once the data was collected, the qualitative data were abductively analyzed. For the quantitative data, descriptive and inferential statistics (one-way ANOVAs and Pearson Chi Square analyses) were calculated to examine perspectives of teachers regardless of teaching background and to compare groups of teachers based on teaching background. The findings of this study suggest that in-service and pre-service teachers have a positive attitude towards the integration of math and science and view it as valuable to student learning and success. The pre-service teachers viewed the integration as easy and did not express concerns to this integration. On the other hand, the in-service teachers highlighted concerns and challenges such as resources, scheduling, and time constraints. My results illustrate when teachers perceive it is valuable to integrate math and science and which aspects of the classroom benefit best from the integration. Furthermore, the results highlight barriers and possible solutions to better the integration of math and science. In addition to the benefits and constraints of integration, my results illustrate why some teachers may opt out of integrating math and science and the different strategies teachers have incorporated to integrate math and science in their classroom.
Resumo:
By investigating the mechanisms underlying the evolution and the maintenance of local adaptations we can help predict how species will adapt to future environmental change. In this thesis I investigate local adaptation and adaptive potential in thick-billed and common murres (Uria lomvia and U. aalge), two arctic seabirds of international conservation concern. Thanks to the recent development of new genomic methods, I address three major themes that are relevant for both the development of evolutionary theory and conservation: 1) the role of gene flow in the origin and maintenance of adaptation; 2) levels and distribution of standing genetic variation, and their contribution to adaptive potential; and 3) the genomic mechanisms maintaining an adaptive dimorphism within a single interbreeding population. First, I review the literature on genomics of local adaptation with gene flow and find that adaptation can be maintained despite gene flow, that gene flow itself can promote adaptation, and that genetic architecture is important in the origin and maintenance of local adaptations. Second, I genotype genome-wide markers and toll-like receptor genes (TLRs) to investigate local adaptation and adaptive potential in thick-billed murres. Thick-billed murres do not show signatures of local adaptation to their breeding grounds, but outlier loci group birds according to their non-breeding distributions, suggesting that selection and/or demographic connectivity in the winter may explain patterns of differentiation in this species. Genetic variation at TLRs does not decrease with increasing latitude as predicted, but tests of selection and measures of genetic diversity suggest differences in local selective regimes at most genes. Thick-billed murres show high levels of standing genetic variation and their adaptive potential will mostly depend on rate and magnitude of environmental change. Finally, I improve and annotate the assembly of the highly heterozygous genome of the thick-billed murre. Using this assembly as a reference, I perform whole genome analyses to investigate the genomic basis of an adaptive dimorphism in Atlantic common murres. I show for the first time that a 60 kb complex copy number variant in a non-coding region maintains differences in plumage and cold adaptation despite high gene flow.