2 resultados para PRECIPITATE PHASES
em Coffee Science - Universidade Federal de Lavras
Resumo:
A Searching for talent and the assessing ability in young prospects from individual and team sports often include measurement, analysis, and evaluation of physical and motor skills. The use of these tests in early stages of talent development has been widely observed in both female and male prospects. The purpose of this paper is to review a series of studies conducted on talented and less-talented athletes/ players that were aimed at distinguishing between the two groups and at predicting the athletes’/players’ future achievements/success. Thirteen studies examining the use of physical and motor skill tests in young prospects are reviewed. Based on this review, four main observations are highlighted and a number of benefits and limitations associated with the use of such tests are discussed. It is recommended that (1) coaches reduce the number of batteries of physical and motor skill tests used in early phases of talent development and (2) coaches and sport scientists specializing in measurement and evaluation cooperate in order to improve the effectiveness of the application and interpretation of physical skill tests given to prospects at early stages of talent development.
Resumo:
Proline (Pro) is a unique amino acid that has been examined previously as a potential chiral selector for high-performance liquid chromatography. In recent years, a new class of promising Pro based enantioselective stationary phases has been studied and the longer peptides were found to be competitive with commercial chiral stationary phases (CSPs). Here, we aim to perform a comprehensive examination of a t-butoxycarbonyl- (t-Boc-) terminated monoproline selector. This selector was grafted through an amide linkage to an aminopropyl siloxane-terminated Si (111) wafer and to a silicon atomic force microscopy tip. To ensure a flat, homogeneous overlayer of selectors suitable for force spectrometric measurements, the prepared surfaces were characterized using XPS, AFM and contact angle measurements. Chemical force spectrometry (CFS) has been used to examine the chiral discrimination in our monoproline CSP by measuring the interaction forces between two D- or L-monoproline monolayers in water and in the presence of a series of amino acids in solution to explore the degree to which binding of amino acids impacts self-selectivity. Chemical force titration (CFT) has been used to observe the influence of variations in pH on the binding interaction of proline modified chiral surfaces. Here we aim to explore the connection between side-chain hydrophobicity and differences in the nature of the binding between different ionic forms of amino acids and the t-Boc-Pro interface, and thereby to gain insight into the mechanism of chiral selectivity. The CFS results show several trends for different proline selector/amino acid combinations and indicate that the binding characteristics of amino acid to the proline surface is strongly dependent on the amino acid side chain where hydrophilic side chain amino acids exhibit a selectivity opposite to that seen for those with hydrophobic side chains. The CFT studies also provide valuable insights into interactions between the proline selector and the amino acids under a wide range of pH conditions, indicating that protonated amine groups of alanine and serine are closely involved in the binding mechanism to proline surfaces. On the other hand, the presence of the second carboxylic group in aspartic acid plays an important role while interacting with proline.