2 resultados para Operation Shylock
em Coffee Science - Universidade Federal de Lavras
Resumo:
This dissertation examines novels that use terrorism to allegorize the threatened position of the literary author in contemporary culture. Allegory is a term that has been differently understood over time, but which has consistently been used by writers to articulate and construct their roles as authors. In the novels I look at, the terrorist challenge to authorship results in multiple deployments of allegory, each differently illustrating the way that allegory is used and authorship constructed in the contemporary American novel. Don DeLillo’s Mao II (1991), first puts terrorists and authors in an oppositional pairing. The terrorist’s ability to traffic in spectacle is presented as indicative of the author’s fading importance in contemporary culture and it is one way that terrorism allegorizes threats to authorship. In Philip Roth’s Operation Shylock (1993), the allegorical pairing is between the text of the novel and outside texts – newspaper reports, legal cases, etc. – that the novel references and adapts in order to bolster its own narrative authority. Richard Powers’s Plowing the Dark (1999) pairs the story of an imprisoned hostage, craving a single book, with employees of a tech firm who are creating interactive, virtual reality artworks. Focusing on the reader’s experience, Powers’s novel posits a form of authorship that the reader can take into consideration, but which does not seek to control the experience of the text. Finally, I look at two of Paul Auster’s twenty-first century novels, Travels in the Scriptorium (2007) and Man in the Dark (2008), to suggest that the relationship between representations of authors and terrorists changed after 9/11. Auster’s author-figures forward an ethics of authorship whereby novels can use narrative to buffer readers against the portrayal of violent acts in a culture that is suffused with traumatizing imagery.
Resumo:
Wireless sensor networks (WSNs) have shown wide applicability to many fields including monitoring of environmental, civil, and industrial settings. WSNs however are resource constrained by many competing factors that span their hardware, software, and networking. One of the central resource constrains is the charge consumption of WSN nodes. With finite energy supplies, low charge consumption is needed to ensure long lifetimes and success of WSNs. This thesis details the design of a power system to support long-term operation of WSNs. The power system’s development occurs in parallel with a custom WSN from the Queen’s MEMS Lab (QML-WSN), with the goal of supporting a 1+ year lifetime without sacrificing functionality. The final power system design utilizes a TPS62740 DC-DC converter with AA alkaline batteries to efficiently supply the nodes while providing battery monitoring functionality and an expansion slot for future development. Testing tools for measuring current draw and charge consumption were created along with analysis and processing software. Through their use charge consumption of the power system was drastically lowered and issues in QML-WSN were identified and resolved including the proper shutdown of accelerometers, and incorrect microcontroller unit (MCU) power pin connection. Controlled current profiling revealed unexpected behaviour of nodes and detailed current-voltage relationships. These relationships were utilized with a lifetime projection model to estimate a lifetime between 521-551 days, depending on the mode of operation. The power system and QML-WSN were tested over a long term trial lasting 272+ days in an industrial testbed to monitor an air compressor pump. Environmental factors were found to influence the behaviour of nodes leading to increased charge consumption, while a node in an office setting was still operating at the conclusion of the trail. This agrees with the lifetime projection and gives a strong indication that a 1+ year lifetime is achievable. Additionally, a light-weight charge consumption model was developed which allows charge consumption information of nodes in a distributed WSN to be monitored. This model was tested in a laboratory setting demonstrating +95% accuracy for high packet reception rate WSNs across varying data rates, battery supply capacities, and runtimes up to full battery depletion.