1 resultado para Non-constant coefficient diffusion equations
em Coffee Science - Universidade Federal de Lavras
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (13)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (11)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (14)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (15)
- Boston University Digital Common (6)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (12)
- CaltechTHESIS (28)
- Cambridge University Engineering Department Publications Database (29)
- CentAUR: Central Archive University of Reading - UK (17)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (95)
- Cochin University of Science & Technology (CUSAT), India (6)
- Coffee Science - Universidade Federal de Lavras (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (8)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (2)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (8)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- Greenwich Academic Literature Archive - UK (10)
- Helda - Digital Repository of University of Helsinki (7)
- Indian Institute of Science - Bangalore - Índia (265)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (6)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (54)
- Queensland University of Technology - ePrints Archive (164)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (78)
- Research Open Access Repository of the University of East London. (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (13)
- Universidade Complutense de Madrid (3)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Montréal, Canada (4)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (2)
- University of Queensland eSpace - Australia (7)
- University of Washington (1)
Resumo:
The purpose of this paper is to derive the dynamical equations for the period vectors of a periodic system under constant external stress. The explicit starting point is Newton’s second law applied to halves of the system. Later statistics over indistinguishable translated states and forces associated with transport of momentum are applied to the resulting dynamical equations. In the final expressions, the period vectors are driven by the imbalance between internal and external stresses. The internal stress is shown to have both full interaction and kinetic-energy terms.