2 resultados para New mechanism

em Coffee Science - Universidade Federal de Lavras


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Usinig original data on 1,5000 mandibles, but mainly previously published data, I present a overview of the distribution characteristics of mandibular torus and a hypothesis concerning its cause. Pedigree studies have established that genetic factors influence torus development. Extrinsic factors are strongly implicated by other evidence: prevalence among Arctic peoples, effect of dietary change, age regression, preponderance in males and on the right side, effect of cranial deformation, concurrence with palatine torus and maxillary alveolar exostoses, and clinical evidence. I propose that the primary factor is masticatory stress. According to a mechanism suggested by orthodontic research, the horizontal component of bite force tips the lower canine, premolars and first molar so that their root apices exert pressure on the periodontal membrane, causing formation of new bone on the lingual cortical plate of the alveolar process. Thus formed, the hyperostosis is vulnerable to trauma and its periosteal covering becomes bruised causing additional deposition of bone. Genes influence torus indirectly through their effect on occlusion. A patern of increased expressivity with incidence suggests that a quasicontinuous model may provide a better fit to pedigree data than single locus models previously tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proline (Pro) is a unique amino acid that has been examined previously as a potential chiral selector for high-performance liquid chromatography. In recent years, a new class of promising Pro based enantioselective stationary phases has been studied and the longer peptides were found to be competitive with commercial chiral stationary phases (CSPs). Here, we aim to perform a comprehensive examination of a t-butoxycarbonyl- (t-Boc-) terminated monoproline selector. This selector was grafted through an amide linkage to an aminopropyl siloxane-terminated Si (111) wafer and to a silicon atomic force microscopy tip. To ensure a flat, homogeneous overlayer of selectors suitable for force spectrometric measurements, the prepared surfaces were characterized using XPS, AFM and contact angle measurements. Chemical force spectrometry (CFS) has been used to examine the chiral discrimination in our monoproline CSP by measuring the interaction forces between two D- or L-monoproline monolayers in water and in the presence of a series of amino acids in solution to explore the degree to which binding of amino acids impacts self-selectivity. Chemical force titration (CFT) has been used to observe the influence of variations in pH on the binding interaction of proline modified chiral surfaces. Here we aim to explore the connection between side-chain hydrophobicity and differences in the nature of the binding between different ionic forms of amino acids and the t-Boc-Pro interface, and thereby to gain insight into the mechanism of chiral selectivity. The CFS results show several trends for different proline selector/amino acid combinations and indicate that the binding characteristics of amino acid to the proline surface is strongly dependent on the amino acid side chain where hydrophilic side chain amino acids exhibit a selectivity opposite to that seen for those with hydrophobic side chains. The CFT studies also provide valuable insights into interactions between the proline selector and the amino acids under a wide range of pH conditions, indicating that protonated amine groups of alanine and serine are closely involved in the binding mechanism to proline surfaces. On the other hand, the presence of the second carboxylic group in aspartic acid plays an important role while interacting with proline.