1 resultado para Meta Data, Semantic Web, Software Maintenance, Software Metrics
em Coffee Science - Universidade Federal de Lavras
Filtro por publicador
- Aberdeen University (17)
- Aberystwyth University Repository - Reino Unido (2)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (10)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (36)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (8)
- Aston University Research Archive (78)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (4)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (39)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (28)
- Cambridge University Engineering Department Publications Database (6)
- CentAUR: Central Archive University of Reading - UK (27)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (21)
- Cochin University of Science & Technology (CUSAT), India (4)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (5)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (13)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (10)
- Digital Peer Publishing (2)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (10)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (6)
- Infoteca EMBRAPA (2)
- Instituto Politécnico do Porto, Portugal (5)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (3)
- Livre Saber - Repositório Digital de Materiais Didáticos - SEaD-UFSCar (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (5)
- Massachusetts Institute of Technology (8)
- Memoria Académica - FaHCE, UNLP - Argentina (9)
- Ministerio de Cultura, Spain (4)
- National Center for Biotechnology Information - NCBI (1)
- Open University Netherlands (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Publishing Network for Geoscientific & Environmental Data (6)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (23)
- Queensland University of Technology - ePrints Archive (61)
- RDBU - Repositório Digital da Biblioteca da Unisinos (6)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositorio de la Universidad de Cuenca (3)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (5)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório do ISCTE - Instituto Universitário de Lisboa (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositório Institucional da Universidade de Brasília (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (49)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (2)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (82)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (15)
- Universidade Metodista de São Paulo (1)
- Universitat de Girona, Spain (7)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (14)
- Université de Montréal (1)
- Université de Montréal, Canada (10)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (6)
- University of Queensland eSpace - Australia (8)
- University of Southampton, United Kingdom (69)
- University of Washington (6)
Resumo:
Security defects are common in large software systems because of their size and complexity. Although efficient development processes, testing, and maintenance policies are applied to software systems, there are still a large number of vulnerabilities that can remain, despite these measures. Some vulnerabilities stay in a system from one release to the next one because they cannot be easily reproduced through testing. These vulnerabilities endanger the security of the systems. We propose vulnerability classification and prediction frameworks based on vulnerability reproducibility. The frameworks are effective to identify the types and locations of vulnerabilities in the earlier stage, and improve the security of software in the next versions (referred to as releases). We expand an existing concept of software bug classification to vulnerability classification (easily reproducible and hard to reproduce) to develop a classification framework for differentiating between these vulnerabilities based on code fixes and textual reports. We then investigate the potential correlations between the vulnerability categories and the classical software metrics and some other runtime environmental factors of reproducibility to develop a vulnerability prediction framework. The classification and prediction frameworks help developers adopt corresponding mitigation or elimination actions and develop appropriate test cases. Also, the vulnerability prediction framework is of great help for security experts focus their effort on the top-ranked vulnerability-prone files. As a result, the frameworks decrease the number of attacks that exploit security vulnerabilities in the next versions of the software. To build the classification and prediction frameworks, different machine learning techniques (C4.5 Decision Tree, Random Forest, Logistic Regression, and Naive Bayes) are employed. The effectiveness of the proposed frameworks is assessed based on collected software security defects of Mozilla Firefox.