2 resultados para Manual transport of loads
em Coffee Science - Universidade Federal de Lavras
Resumo:
In typical theoretical or experimental studies of heat migration in discrete fractures, conduction and thermal dispersion are commonly neglected from the fracture heat transport equation, assuming heat conduction into the matrix is predominant. In this study analytical and numerical models are used to investigate the significance of conduction and thermal dispersion in the plane of the fracture for a point and line sources geometries. The analytical models account for advective, conductive and dispersive heat transport in both the longitudinal and transverse directions in the fracture. The heat transport in the fracture is coupled with a matrix equation in which heat is conducted in the direction perpendicular to the fracture. In the numerical model, the governing heat transport processes are the same as the analytical models; however, the matrix conduction is considered in both longitudinal and transverse directions. Firstly, we demonstrate that longitudinal conduction and dispersion are critical processes that affect heat transport in fractured rock environments, especially for small apertures (eg. 100 μm or less), high flow rate conditions (eg. velocity greater than 50 m/day) and early time (eg. less than 10 days). Secondly, transverse thermal dispersion in the fracture plane is also observed to be an important transport process leading to retardation of the migrating heat front particularly at late time (eg. after 40 days of hot water injection). Solutions which neglect dispersion in the transverse direction underestimate the locations of heat fronts at late time. Finally, this study also suggests that the geometry of the heat sources has significant effects on the heat transport in the system. For example, the effects of dispersion in the fracture are observed to decrease when the width of the heat source expands.
Resumo:
Light non-aqueous phase liquid (LNAPL) sources can pose a significant threat to indoor air through vapour intrusion (VI). Most conceptual and numerical models of VI assume that the transport of volatile organic compounds (VOCs) is a diffusion-limited process. Recently, alternate conditions have been identified that could lead to faster transport, including the presence of preferential pathways and methanogenic gas production. In this study, an additional mechanism that could lead to faster transport was investigated: bubble-facilitated VOC transport from LNAPL smear zones. A laboratory investigation was preformed using pentane in one-dimensional laboratory columns and two-dimensional visualization experiments. Results of the column experiments showed that average VOC mass fluxes in the bubble-facilitated columns were over two orders of magnitude greater than in the diffusion-limited columns. In addition, the flux signal was intermittent, consistent with expectations of bubble-facilitated transport as bubbles expand, mobilize and are released to the vadose zone at various times during the test. The results from the visualization experiments showed gas fingers growing and mobilizing over time, which supports the findings of the column experiments. In conclusion, these results demonstrate the potential for bubble-facilitated VOC transport to affect mass transfer in LNAPL smear zones, and lead to increased indoor air concentrations by VI.