4 resultados para MINING ENGINEERING
em Coffee Science - Universidade Federal de Lavras
Resumo:
Far-field stresses are those present in a volume of rock prior to excavations being created. Estimates of the orientation and magnitude of far-field stresses, often used in mine design, are generally obtained by single-point measurements of stress, or large-scale, regional trends. Point measurements can be a poor representation of far-field stresses as a result of excavation-induced stresses and geological structures. For these reasons, far-field stress estimates can be associated with high levels of uncertainty. The purpose of this thesis is to investigate the practical feasibility, applications, and limitations of calibrating far-field stress estimates through tunnel deformation measurements captured using LiDAR imaging. A method that estimates the orientation and magnitude of excavation-induced principal stress changes through back-analysis of deformation measurements from LiDAR imaged tunnels was developed and tested using synthetic data. If excavation-induced stress change orientations and magnitudes can be accurately estimated, they can be used in the calibration of far-field stress input to numerical models. LiDAR point clouds have been proven to have a number of underground applications, thus it is desired to explore their use in numerical model calibration. The back-analysis method is founded on the superposition of stresses and requires a two-dimensional numerical model of the deforming tunnel. Principal stress changes of known orientation and magnitude are applied to the model to create calibration curves. Estimation can then be performed by minimizing squared differences between the measured tunnel and sets of calibration curve deformations. In addition to the back-analysis estimation method, a procedure consisting of previously existing techniques to measure tunnel deformation using LiDAR imaging was documented. Under ideal conditions, the back-analysis method estimated principal stress change orientations within ±5° and magnitudes within ±2 MPa. Results were comparable for four different tunnel profile shapes. Preliminary testing using plastic deformation, a rough tunnel profile, and profile occlusions suggests that the method can work under more realistic conditions. The results from this thesis set the groundwork for the continued development of a new, inexpensive, and efficient far-field stress estimate calibration method.
Resumo:
Microwave reduction testing using activated charcoal as a reducing agent was performed on a sample of Black Thor chromite ore from the Ring of Fire deposit in Northern Ontario. First, a thermodynamic model was constructed for the system. Activity coefficients for several species were found in the literature. The model predicted chromium grades of 61.60% and recoveries of 93.43% for a 15% carbon addition. Next, reduction testing on the chromite ore was performed. Tests were performed at increasing power levels and reduction times. Testing atmospheres used were air, argon, and vacuum. The reduced product had maximum grades of 72.89% and recoveries of 80.37%. These maximum values were obtained in the same test where an argon atmosphere was used, with a carbon addition of 15%, optimal power level of 1200 W (actual 1171 W), and a time of 400 seconds. During this test, 17.53% of the initial mass was lost as gas, a carbon grade of 1.95% was found for the sintered core product. Additional work is recommended to try and purify the sintered core product as well as reduce more of the initial sample. Changing reagent schemes or a two step reduction / separation process could be implemented.
Resumo:
Heat management in mines is a growing issue as mines expand physically in size and depth and as the infrastructure grows that is required to maintain them. Heat management is a concern as it relates to the health and safety of the workers as set by the regulations of governing bodies as well as the heat sensitive equipment that may be found throughout the mine workings. In order to reduce the exposure of working in hot environments there are engineering and management systems that can monitor and control the environmental conditions within the mine. The successful implementation of these methods can manage the downtime caused by heat stress environments, which can increase overall production. This thesis introduces an approach to monitoring and data based heat management. A case study is presented with an in depth approach to data collection. Data was collected for a period of up to and over one year. Continuous monitoring was conducted by equipment that was developed both commercially and within the mine site. The monitoring instrumentation was used to assess the environmental conditions found within the study area. Analysis of the data allowed for an engineering assessment of viable options in order to control and manage the environment heat stress. An option is developed and presented which allows for the greatest impact on the heat stress conditions within the case study area and is economically viable for the mine site.
Resumo:
The main objective of blasting is to produce optimum fragmentation for downstream processing. Fragmentation is usually considered optimum when the average fragment size is minimum and the fragmentation distribution as uniform as possible. One of the parameters affecting blasting fragmentation is believed to be time delay between holes of the same row. Although one can find a significant number of studies in the literature, which examine the relationship between time delay and fragmentation, their results have been often controversial. The purpose of this work is to increase the level of understanding of how time delay between holes of the same row affects fragmentation. Two series of experiments were conducted for this purpose. The first series involved tests on small scale grout and granite blocks to determine the moment of burden detachment. The instrumentation used for these experiments consisted mainly of strain gauges and piezoelectric sensors. Some experiments were also recorded with a high speed camera. It was concluded that the time of detachment for this specific setup is between 300 and 600 μs. The second series of experiments involved blasting of a 2 meter high granite bench and its purpose was the determination of the hole-to-hole delay that provides optimum fragmentation. The fragmentation results were assessed with image analysis software. Moreover, vibration was measured close to the blast and the experiments were recorded with high speed cameras. The results suggest that fragmentation was optimum when delays between 4 and 6 ms were used for this specific setup. Also, it was found that the moment at which gases first appear to be venting from the face was consistently around 6 ms after detonation.