2 resultados para Localization and tracking

em Coffee Science - Universidade Federal de Lavras


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Greater Himalayan leucogranites are a discontinuous suite of intrusions emplaced in a thickened crust during the Miocene southward ductile extrusion of the Himalayan metamorphic core. Melt-induced weakening is thought to have played a critical role in strain localization that facilitated the extrusion. Recent advancements in centrifuge analogue modelling techniques allow for the replication of a broader range of crustal deformation behaviors, enhancing our understanding of large hot orogens. Polydimethylsiloxane (PDMS) is commonly used in centrifuge experiments to model weak melt zones. Difficulties in handling PDMS had, until now, limited its emplacement in models prior to any deformation. A new modelling technique has been developed where PDMS is emplaced into models that have been subjected to some shortening. This technique aims to better understand the effects of melt on strain localization and potential decoupling between structural levels within an evolving orogenic system. Models are subjected to an early stage of shortening, followed by the introduction of PDMS, and then a final stage of shortening. Theoretical percentages of partial melt and their effect on rock strength are considered when adding a specific percentage of PDMS in each model. Due to the limited size of the models, only PDMS sheets of 3 mm thickness were used, which varied in length and width. Within undeformed packages, minimal surface and internal deformation occurred when PDMS is emplaced in the lower layer of the model, showing a vertical volume increase of ~20% within the package; whereas the emplacement of PDMS into the middle layer showed internal dragging of the middle laminations into the lower layer and a vertical volume increase ~30%. Emplacement of PDMS results in ~7% shortening for undeformed and deformed models. Deformed models undergo ~20% additional shortening after two rounds of deformation. Strain localization and decoupling between units occur in deformed models where the degree of deformation changes based on the amount of partial melt present. Surface deformation visible by the formation of a bulge, mode 1 extension cracks and varying surface strain ellipses varies depending if PDMS is present. Better control during emplacement is exhibited when PDMS is added into cooler models, resulting in reduced internal deformation within the middle layer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Salmonella are Gram-negative, intracellular food-borne pathogens that cause pregnancy complications. In pregnant mice, Salmonella enterica serovar Typhimurium (S.Tm) infection results in placental bacterial replication, inflammation, necrosis, and fetal loss by unknown mechanisms. Necroptosis, or programmed necrosis mediated by RIPK3 (receptor-interacting protein kinase 3), an inflammatory cell death pathway, is implicated in the pathogenesis of S.Tm in non-pregnant mice. This goal of this thesis was to investigate the role of necroptosis in the pathogenesis of S.Tm infection during mouse pregnancy. I hypothesized that elimination of the key necroptotic cell death protein RIPK3 would decrease placental inflammation and trophoblast cell death, and increase conceptus survival compared to controls. Mice expressing a functional Slc11a1 (encodes the natural resistance-associated macrophage protein 1, NRAMP1) gene with or without RIPK3 function (Ripk3-/-Slc11a1+/+ compared to Slc11a1+/+) were infected with 103 S.Tm by tail vein injection on gestational day (GD) 12. Mice were euthanized on GD 14 (48h post-infection) or GD 15 (72h post-infection) and implantation sites (IS) and maternal serum were harvested for analyses. In nearly all challenged mice (except one outlier), S.Tm were detected in most IS within a litter but there was limited immune cell infiltration, placental damage or cell death in Slc11a1 competent mice regardless of Ripk3 gene deletion. Maternal serum cytokine analyses confirmed lack of maternal immune responses to S.Tm infection. IS amongst the litter of a single dam (Ripk3-/-Slc11a1+/+ at 72h postinfection) displayed heavy but not universal placental S.Tm infection of decidual tissues and spongiotrophoblast, associated with elevated maternal serum pro-inflammatory cytokines. S.Tm infection of the fetal yolk sac (YS) was observed in 54.5% of IS from this dam. YS infection was confirmed in archival samples in mice expressing Ripk3 with intact Slc11a1 and in mice lacking functional Slc11a1. In Slc11a1 incompetent mice, S.Tm were detected in placental labyrinthine trophoblast. Based on the available data, this thesis suggests that Ripk3 and necroptosis have no significant roles in either promotion or prevention of progressive Salmonella infection during mouse pregnancy. It also provides pilot data that NRAMP1 controls placental localization and lethality due to YS infection.