1 resultado para Liquid-vapor Interface
em Coffee Science - Universidade Federal de Lavras
Resumo:
Light non-aqueous phase liquid (LNAPL) sources can pose a significant threat to indoor air through vapour intrusion (VI). Most conceptual and numerical models of VI assume that the transport of volatile organic compounds (VOCs) is a diffusion-limited process. Recently, alternate conditions have been identified that could lead to faster transport, including the presence of preferential pathways and methanogenic gas production. In this study, an additional mechanism that could lead to faster transport was investigated: bubble-facilitated VOC transport from LNAPL smear zones. A laboratory investigation was preformed using pentane in one-dimensional laboratory columns and two-dimensional visualization experiments. Results of the column experiments showed that average VOC mass fluxes in the bubble-facilitated columns were over two orders of magnitude greater than in the diffusion-limited columns. In addition, the flux signal was intermittent, consistent with expectations of bubble-facilitated transport as bubbles expand, mobilize and are released to the vadose zone at various times during the test. The results from the visualization experiments showed gas fingers growing and mobilizing over time, which supports the findings of the column experiments. In conclusion, these results demonstrate the potential for bubble-facilitated VOC transport to affect mass transfer in LNAPL smear zones, and lead to increased indoor air concentrations by VI.