3 resultados para INITIAL MASS FUNCTION
em Coffee Science - Universidade Federal de Lavras
Resumo:
Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2016-06-17 02:15:25.215
Resumo:
Microwave reduction testing using activated charcoal as a reducing agent was performed on a sample of Black Thor chromite ore from the Ring of Fire deposit in Northern Ontario. First, a thermodynamic model was constructed for the system. Activity coefficients for several species were found in the literature. The model predicted chromium grades of 61.60% and recoveries of 93.43% for a 15% carbon addition. Next, reduction testing on the chromite ore was performed. Tests were performed at increasing power levels and reduction times. Testing atmospheres used were air, argon, and vacuum. The reduced product had maximum grades of 72.89% and recoveries of 80.37%. These maximum values were obtained in the same test where an argon atmosphere was used, with a carbon addition of 15%, optimal power level of 1200 W (actual 1171 W), and a time of 400 seconds. During this test, 17.53% of the initial mass was lost as gas, a carbon grade of 1.95% was found for the sintered core product. Additional work is recommended to try and purify the sintered core product as well as reduce more of the initial sample. Changing reagent schemes or a two step reduction / separation process could be implemented.
Resumo:
To find examples of effecient locomotion and manoeuvrability, one need only turn to the elegant solutions natural flyers and swimmers have converged upon. This dissertation is specifically motivated by processes of evolutionary convergence, which have led to the propulsors and body shapes in nature that exhibit strong geometric collapse over diverse scales. These body features are abstracted in the studies presented herein using low-aspect-ratio at plates and a three-dimensional body of revolution (a sphere). The highly-separated vortical wakes that develop during accelerations are systematically characterized as a function of planform shape, aspect ratio, Reynolds number, and initial boundary conditions. To this end, force measurements and time-resolved (planar) particle image velocimetry have been used throughout to quantify the instantaneous forces and vortex evolution in the wake of the bluff bodies. During rectilinear motions, the wake development for the flat plates is primarily dependent on plate aspect ratio, with edge discontinuities and curvature playing only a secondary role. Furthermore, the axisymmetric case, i.e. the circular plate, shows strong sensitivity to Reynolds number, while this sensitivity quickly diminishes with increasing aspect ratio. For rotational motions, global insensitivity to plate aspect ratio has been observed. For the sphere, it has been shown that accelerations play an important role in the mitigation of flow separation. These results - expounded upon in this dissertation - have begun to shed light on the specific vortex dynamics that may be coopted by flying and swimming species of all shapes and sizes towards efficient locomotion.