1 resultado para Hierarchical dynamic models
em Coffee Science - Universidade Federal de Lavras
Filtro por publicador
- Repository Napier (2)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (19)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (8)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (50)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital - Universidad Icesi - Colombia (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (158)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (27)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (7)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (55)
- Cochin University of Science & Technology (CUSAT), India (5)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (6)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (34)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (9)
- Digital Commons at Florida International University (16)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (9)
- DigitalCommons@University of Nebraska - Lincoln (5)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (30)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (6)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institutional Repository of Leibniz University Hannover (2)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (9)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (9)
- Memorial University Research Repository (3)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (2)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (7)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (6)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (3)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (6)
- Repositório da Produção Científica e Intelectual da Unicamp (12)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (21)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (33)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Saúde Pública - SP (8)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (13)
- Universidad de Alicante (7)
- Universidad del Rosario, Colombia (7)
- Universidad Politécnica de Madrid (54)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (4)
- Universidade dos Açores - Portugal (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Metodista de São Paulo (1)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (41)
- Université de Montréal (1)
- Université de Montréal, Canada (18)
- Université Laval Mémoires et thèses électroniques (2)
- University of Connecticut - USA (1)
- University of Michigan (2)
- University of Queensland eSpace - Australia (100)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Stroke is a leading cause of death and permanent disability worldwide, affecting millions of individuals. Traditional clinical scores for assessment of stroke-related impairments are inherently subjective and limited by inter-rater and intra-rater reliability, as well as floor and ceiling effects. In contrast, robotic technologies provide objective, highly repeatable tools for quantification of neurological impairments following stroke. KINARM is an exoskeleton robotic device that provides objective, reliable tools for assessment of sensorimotor, proprioceptive and cognitive brain function by means of a battery of behavioral tasks. As such, KINARM is particularly useful for assessment of neurological impairments following stroke. This thesis introduces a computational framework for assessment of neurological impairments using the data provided by KINARM. This is done by achieving two main objectives. First, to investigate how robotic measurements can be used to estimate current and future abilities to perform daily activities for subjects with stroke. We are able to predict clinical scores related to activities of daily living at present and future time points using a set of robotic biomarkers. The findings of this analysis provide a proof of principle that robotic evaluation can be an effective tool for clinical decision support and target-based rehabilitation therapy. The second main objective of this thesis is to address the emerging problem of long assessment time, which can potentially lead to fatigue when assessing subjects with stroke. To address this issue, we examine two time reduction strategies. The first strategy focuses on task selection, whereby KINARM tasks are arranged in a hierarchical structure so that an earlier task in the assessment procedure can be used to decide whether or not subsequent tasks should be performed. The second strategy focuses on time reduction on the longest two individual KINARM tasks. Both reduction strategies are shown to provide significant time savings, ranging from 30% to 90% using task selection and 50% using individual task reductions, thereby establishing a framework for reduction of assessment time on a broader set of KINARM tasks. All in all, findings of this thesis establish an improved platform for diagnosis and prognosis of stroke using robot-based biomarkers.