2 resultados para Generalized variance

em Coffee Science - Universidade Federal de Lavras


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Development Permit System has been introduce with minimal directives for establishing a decision making process. This is in opposition to the long established process for minor variances and suggests that the Development Permit System does not necessarily incorporate all of Ontario’s fundamental planning principles. From this concept, the study aimed to identify how minor variances are incorporated into the Development Permit System. In order to examine this topic, the research was based around the following research questions: • How are ‘minor variance’ applications processed within the DPS? • To what extent do the four tests of a minor variance influence the outcomes of lower level applications in the DPS approval process? A case study approach was used for this research. The single-case design employed both qualitative and quantitative research methods including a review of academic literature, court cases, and official documents, as well as a content analysis of Class 1, 1A, and 2 Development Permit application files from the Town of Carleton Place that were decided between 2011 and 2015. Upon the completion of the content analysis, it was found that minor variance issues were most commonly assigned to Class 1 applications. Planning staff generally met approval timelines and embraced their delegated approval authority, readily attaching conditions to applications in order to mitigate off-site impacts. While staff met the regulatory requirements of the DPS, ‘minor variance’ applications were largely decided on impact alone, demonstrating that the principles established by the four tests, the defining quality of the minor variance approval process, had not transferred to the Development Permit System. Alternatively, there was some evidence that the development community has not fully adjusted to the requirements of the new approvals process, as some applications were supported using a rationale containing the four tests. Subsequently, a set of four recommendations were offered which reflect the main themes established by the findings. The first two recommendations are directed towards the Province, the third to municipalities and the fourth to developers and planning consultants: 1) Amend Ontario Regulation 608/06 so that provisions under Section 4(3)(e) fall under Section 4(2). 2) Change the rhetoric from “combining elements of minor variances” to “replacing minor variances”. 3) Establish clear evaluation criteria. 4) Understand the evaluative criteria of the municipality in which you are working.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To effectively assess and mitigate risk of permafrost disturbance, disturbance-p rone areas can be predicted through the application of susceptibility models. In this study we developed regional susceptibility models for permafrost disturbances using a field disturbance inventory to test the transferability of the model to a broader region in the Canadian High Arctic. Resulting maps of susceptibility were then used to explore the effect of terrain variables on the occurrence of disturbances within this region. To account for a large range of landscape charac- teristics, the model was calibrated using two locations: Sabine Peninsula, Melville Island, NU, and Fosheim Pen- insula, Ellesmere Island, NU. Spatial patterns of disturbance were predicted with a generalized linear model (GLM) and generalized additive model (GAM), each calibrated using disturbed and randomized undisturbed lo- cations from both locations and GIS-derived terrain predictor variables including slope, potential incoming solar radiation, wetness index, topographic position index, elevation, and distance to water. Each model was validated for the Sabine and Fosheim Peninsulas using independent data sets while the transferability of the model to an independent site was assessed at Cape Bounty, Melville Island, NU. The regional GLM and GAM validated well for both calibration sites (Sabine and Fosheim) with the area under the receiver operating curves (AUROC) N 0.79. Both models were applied directly to Cape Bounty without calibration and validated equally with AUROC's of 0.76; however, each model predicted disturbed and undisturbed samples differently. Addition- ally, the sensitivity of the transferred model was assessed using data sets with different sample sizes. Results in- dicated that models based on larger sample sizes transferred more consistently and captured the variability within the terrain attributes in the respective study areas. Terrain attributes associated with the initiation of dis- turbances were similar regardless of the location. Disturbances commonly occurred on slopes between 4 and 15°, below Holocene marine limit, and in areas with low potential incoming solar radiation