2 resultados para First Church (Salem, Mass.)
em Coffee Science - Universidade Federal de Lavras
Resumo:
East Lake, located at Cape Bounty (Melville Island, Canadian High Arctic), was mapped using a high-resolution swath bathymetric sonar and a 12 kHz sub-bottom profiler, allowing for the first time the imaging of widespread occurrence of mass movement deposits (MMDs) in a Canadian High Arctic Lake. Mass movements occurred mostly on steep slopes located away from deltaic sedimentation. The marine to lacustrine transition in the sediment favours the generation of mass movements where the underlying massive mud appears to act as a gliding surface for the overlying varved deposits. Based on acoustic stratigraphy, we have identified at least two distinct events that triggered failures in the lake during the last 2000 years. The synchronicity of multiple failures and their widespread distribution suggest a seismic origin that could be related to the nearby Gustaf-Lougheed Arch seismic zone. Further sedimentological investigations on the MMDs are however required to confirm their age and origin.
Resumo:
We consider the simplest relevant problem in the foaming of molten plastics, the growth of a single bubble in a sea of highly viscous Newtonian fluid, and without interference from other bubbles. This simplest problem has defied accurate solution from first principles. Despite plenty of research on foaming, classical approaches from first principles have neglected the temperature rise in the surrounding fluid, and we find that this oversimplification greatly accelerates bubble growth prediction. We use a transport phenomena approach to analyze the growth of a solitary bubble, expanding under its own pressure. We consider a bubble of ideal gas growing without the accelerating contribution from mass transfer into the bubble. We explore the roles of viscous forces, fluid inertia, and viscous dissipation. We find that bubble growth depends upon the nucleus radius and nucleus pressure. We begin with a detailed examination of the classical approaches (thermodynamics without viscous heating). Our failure to fit experimental data with these classical approaches, sets up the second part of our paper, a novel exploration of the essential decelerating role of viscous heating. We explore both isothermal and adiabatic bubble expansion, and also the decelerating role of surface tension. The adiabatic analysis accounts for the slight deceleration due to the cooling of the expanding gas, which depends on gas polyatomicity. We also explore the pressure profile, and the components of the extra stress tensor, in the fluid surrounding the growing bubble. These stresses can eventually be frozen into foamed plastics. We find that our new theory compares well with measured bubble behavior.