3 resultados para Field testing and monitoring,
em Coffee Science - Universidade Federal de Lavras
Resumo:
Despite the development of improved performance test protocols by renowned researchers, there are still road networks which experience premature cracking and failure. One area of major concern in asphalt science and technology, especially in cold regions in Canada is thermal (low temperature) cracking. Usually right after winter periods, severe cracks are seen on poorly designed road networks. Quality assurance tests based on improved asphalt performance protocols have been implemented by government agencies to ensure that roads being constructed are at the required standard but asphalt binders that pass these quality assurance tests still crack prematurely. While it would be easy to question the competence of the quality assurance test protocols, it should be noted that performance tests which are being used and were repeated in this study, namely the extended bending beam rheometer (EBBR) test, double edge-notched tension test (DENT), dynamic shear rheometer (DSR) test and X-ray fluorescence (XRF) analysis have all been verified and proven to successfully predict asphalt pavement behaviour in the field. Hence this study looked to probe and test the quality and authenticity of the asphalt binders being used for road paving. This study covered thermal cracking and physical hardening phenomenon by comparing results from testing asphalt binder samples obtained from the storage ‘tank’ prior to paving (tank samples) and recovered samples for the same contracts with aim of explaining why asphalt binders that have passed quality assurance tests are still prone to fail prematurely. The study also attempted to find out if the short testing time and automated procedure of torsion bar experiments can replace the established but tedious procedure of the EBBR. In the end, it was discovered that significant differences in performance and composition exist between tank and recovered samples for the same contracts. Torsion bar experimental data also indicated some promise in predicting physical hardening.
Resumo:
This paper describes the design, tuning, and extensive field testing of an admittance-based Autonomous Loading Controller (ALC) for robotic excavation. Several iterations of the ALC were tuned and tested in fragmented rock piles—similar to those found in operating mines—by using both a robotic 1-tonne capacity Kubota R520S diesel-hydraulic surface loader and a 14-tonne capacity Atlas Copco ST14 underground load-haul-dump (LHD) machine. On the R520S loader, the ALC increased payload by 18 % with greater consistency, although with more energy expended and longer dig times when compared with digging at maximum actuator velocity. On the ST14 LHD, the ALC took 61 % less time to load 39 % more payload when compared to a single manual operator. The manual operator made 28 dig attempts by using three different digging strategies, and had one failed dig. The tuned ALC made 26 dig attempts at 10 and 11 MN target force levels. All 10 11 MN digs succeeded while 6 of the 16 10 MN digs failed. The results presented in this paper suggest that the admittance-based ALC is more productive and consistent than manual operators, but that care should be taken when detecting entry into the muck pile
Resumo:
By virtue of its proximity and richness, the Virgo galaxy cluster is a perfect testing ground to expand our understanding of structure formation in the Universe. Here, we present a comprehensive dynamical catalogue based on 190 Virgo cluster galaxies (VCGs) in the "Spectroscopy and H-band Imaging of the Virgo cluster" (SHIVir) survey, including kinematics and dynamical masses. Spectroscopy collected over a multi-year campaign on 4-8m telescopes was joined with optical and near-infrared imaging to create a cosmologically-representative overview of parameter distributions and scaling relations describing galaxy evolution in a rich cluster environment. The use of long-slit spectroscopy has allowed the extraction and systematic analysis of resolved kinematic profiles: Halpha rotation curves for late-type galaxies (LTGs), and velocity dispersion profiles for early-type galaxies (ETGs). The latter are shown to span a wide range of profile shapes which correlate with structural, morphological, and photometric parameters. A study of the distributions of surface brightnesses and circular velocities for ETGs and LTGs considered separately show them all to be strongly bimodal, hinting at the existence of dynamically unstable modes where the baryon and dark matter fractions may be comparable within the inner regions of galaxies. Both our Tully-Fisher relation for LTGs and Fundamental Plane analysis for ETGs exhibit the smallest scatter when a velocity metric probing the galaxy at larger radii (where the baryonic fraction becomes sub-dominant) is used: rotational velocity measured in the outer disc at the 23.5 i-mag arcsec^{-2} level, and velocity dispersion measured within an aperture of 2 effective radii, respectively. Dynamical estimates for gas-poor and gas-rich VCGs are merged into a joint analysis of the stellar-to-total mass relation (STMR), stellar TFR, and Mass-Size relation. These relations are all found to contain strong bimodalities or dichotomies between the ETG and LTG samples, alluding to a "mixed scenario'' evolutionary sequence between morphological/dynamical classes that involves both quenching and dry mergers. The unmistakable differentiation between these two galaxy classes appears robust against different classification schemes, and supports the notion that they are driven by different evolutionary histories. Future observations using integral field spectroscopy and including lower-mass galaxies should solidify this hypothesis.