1 resultado para Drug delivery mechanism

em Coffee Science - Universidade Federal de Lavras


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sustained drug release systems provide many advantages over traditional delivery methods such as extending the time in which the drug is found to be within an effective concentration within the therapeutic window, which decreases the frequency of administration of the drug, and increases patient compliance. Research using polyacrylamide crosslinked by oligomers containing an aptamer sequence, has demonstrated a pulsatile release over 50 minutes triggered by a 2 mM target adenosine concentration. This thesis aims to build off this concept by designing a system that delivers in a sustained manner when triggered by micromolar target concentrations reflective of disease in vivo, using macromolecular targets. For example, the disease wet age related macular degeneration (wet AMD) is associated with increased concentrations of the protein vascular endothelial growth factor (VEGF-A) – a macromolecule. Patients with wet AMD would benefit from the implantation of devices or microspheres that release drugs in a sustained manner in response to local VEGF concentrations. In this thesis, we hypothesize that the protein lysozyme, used to demonstrate proof-of-concept, could trigger the increased release of drugs from oligomer-crosslinked alginate. The objectives are to (i) demonstrate sustained release from alginate, (ii) design oligomer crosslinked alginate that degrades in response to lysozyme, and then (iii) use these systems to control the release of FITC-dextran with and without lysozyme. A series of control experiments and analyses were used to optimize the crosslinking of alginate by annealed oligomers. The cumulative release of FITC-dextran (MW 20,000) from oligomer crosslinked alginate increased by 3.4 μg when lysozyme (3 μM) was introduced at 48 hours, as opposed to controls which released only 0.2 μg. FITC-loaded alginate microspheres coated by oligomer-crosslinked alginate released 15% more FITC-dextran over 120 hours when placed into 3 μM of lysozyme than without lysozyme. Controls of alginate crosslinked with PEG or control oligomers (without a lysozyme aptamer sequence) had no changes in release with lysozyme. The incorporation of a lysozyme aptamer onto oligomers used to crosslink alginate disks or alginate coatings on microspheres resulted in different diffusion and release of FITC-dextran into PBS with or without lysozyme. This approach could be adapted for the delivery of drugs to diseases with specific protein profiles such as wet AMD.