2 resultados para Dlx5 Protein Mouse
em Coffee Science - Universidade Federal de Lavras
Resumo:
Electrical synapses are composed of gap junctions, made from paired hemi-channels that allow for the transfer of current from one neuron to another. Gap junctions mediate electrical transmission in neurons, where they synchronize spiking and promote rapid transmission, thereby influencing the coordination, pattern, and frequency of firing. In the marine snail, Aplysia calfornica, two clusters of neuroendocrine bag cell neurons use electrical synapses to synchronize a 30-min burst of action potentials, known as the afterdischarge, which releases egg-laying hormone and induces reproduction. In culture, paired bag cell neurons present a junctional conductance that is non-rectifying and largely voltage-independent. During the afterdischarge, PKC is activated, which is known to increase voltage-gated Ca2+ current; yet, little is understood as to how this pathway impacts electrical transmission. The transfer of presynaptic spike-like waveforms (generated in voltage-clamp) to the postsynaptic cell (measured in current-clamp) was monitored with or without PKC activation. It was found that pretreatment with the PKC activator, phorbol-12-myristate-13-acetate (PMA), enhanced junctional conductance between bag cell neurons. Furthermore, in control, presynaptic action potential waveforms mainly evoked postsynaptic electrotonic potentials at both -60 and -40 mV. However, with PKC activation the presynaptic stimulus consistently elicited postsynaptic action potentials from resting potentials of -40 mV, and would occasionally result in firing from repetitive input at -60 mV. Moreover, to assess whether this enhanced electrical transmission genuinely reflects a greater junctional conductance or a change in postsynaptic responsiveness, a fast-phase junctional-like current was applied to single bag cell neurons. Neurons in PMA always fired action potentials in response to current injection as opposed to control, which were less likely to spike. This outcome did not change when the junctional-like current was artificially enhanced in control conditions. Also, in response to fast- and slow-phase electrotonic potential (ETP) waveforms, Ca2+ current was markedly larger in single PMA-treated neurons. These findings suggest that PKC activation may contribute to afterdischarge fidelity by recruiting postsynaptic Ca2+ current to promote synchronous network firing. Finally, Aplysia gap junction genes (innexins) were transfected into mouse N2A cells and characterized. This revealed a biophysical and pharmacological profile similar to native gap junctions.
Resumo:
Salmonella are Gram-negative, intracellular food-borne pathogens that cause pregnancy complications. In pregnant mice, Salmonella enterica serovar Typhimurium (S.Tm) infection results in placental bacterial replication, inflammation, necrosis, and fetal loss by unknown mechanisms. Necroptosis, or programmed necrosis mediated by RIPK3 (receptor-interacting protein kinase 3), an inflammatory cell death pathway, is implicated in the pathogenesis of S.Tm in non-pregnant mice. This goal of this thesis was to investigate the role of necroptosis in the pathogenesis of S.Tm infection during mouse pregnancy. I hypothesized that elimination of the key necroptotic cell death protein RIPK3 would decrease placental inflammation and trophoblast cell death, and increase conceptus survival compared to controls. Mice expressing a functional Slc11a1 (encodes the natural resistance-associated macrophage protein 1, NRAMP1) gene with or without RIPK3 function (Ripk3-/-Slc11a1+/+ compared to Slc11a1+/+) were infected with 103 S.Tm by tail vein injection on gestational day (GD) 12. Mice were euthanized on GD 14 (48h post-infection) or GD 15 (72h post-infection) and implantation sites (IS) and maternal serum were harvested for analyses. In nearly all challenged mice (except one outlier), S.Tm were detected in most IS within a litter but there was limited immune cell infiltration, placental damage or cell death in Slc11a1 competent mice regardless of Ripk3 gene deletion. Maternal serum cytokine analyses confirmed lack of maternal immune responses to S.Tm infection. IS amongst the litter of a single dam (Ripk3-/-Slc11a1+/+ at 72h postinfection) displayed heavy but not universal placental S.Tm infection of decidual tissues and spongiotrophoblast, associated with elevated maternal serum pro-inflammatory cytokines. S.Tm infection of the fetal yolk sac (YS) was observed in 54.5% of IS from this dam. YS infection was confirmed in archival samples in mice expressing Ripk3 with intact Slc11a1 and in mice lacking functional Slc11a1. In Slc11a1 incompetent mice, S.Tm were detected in placental labyrinthine trophoblast. Based on the available data, this thesis suggests that Ripk3 and necroptosis have no significant roles in either promotion or prevention of progressive Salmonella infection during mouse pregnancy. It also provides pilot data that NRAMP1 controls placental localization and lethality due to YS infection.