2 resultados para Dependent Failures, Interactive Failures, Interactive Coefficients, Reliability, Complex System

em Coffee Science - Universidade Federal de Lavras


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A distributed network of cortical and subcortical brain regions mediates the control of voluntary behavior, but it is unclear how this complex system may flexibly shift between different behavioral events. This thesis describes the neurophysiological changes in several key nuclei across the brain during flexible behavior, using saccadic eye movements in rhesus macaque monkeys. We examined five nuclei critical for saccade initiation and modulation: the frontal eye field (FEF) in the cerebral cortex, the subthalamic nucleus (STN), caudate nucleus (CD), and substantia nigra pars reticulata (SNr) in the basal ganglia (BG), and the superior colliculus (SC) in the midbrain. The first study tested whether a ‘threshold’ theory of how neuronal activity cues saccade initiation is consistent with the flexible control of behavior. The theory suggests there is a fixed level of FEF and SC neuronal activation at which saccades are initiated. Our results provide strong evidence against a fixed saccade threshold in either structure during flexible behavior, and indicate that threshold variability might depend on the level of inhibitory signals applied to the FEF or SC. The next two studies investigated the BG network as a likely candidate to modulate a saccade initiation mechanism, based on strong inhibitory output signals from the BG to the FEF and SC. We investigated the STN and CD (BG input), and the SNr (BG oculomotor output) to examine changes across the BG network. This revealed robust task-contingent shifts in BG signaling (Chapter 3), which uniquely impacted saccade initiation according to behavioral condition (Chapters 3 and 4). The thesis concludes with a published short review of the mechanistic effects of BG deep brain stimulation (Chapter 5), and a general discussion including proof of concept saccade behavioral changes in an MPTP-induced Parkinsonian model (Chapter 6). The studies presented here demonstrate that the conditions for saccade initiation by the FEF and SC vary according to behavioral condition, while simultaneously, large-scale task dependent shifts occur in BG signaling consistent with the observed modulation of FEF and SC activity. Taken together, these describe a mechanistic framework by which the cortico-BG loop may contribute to the flexible control of behavior.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

There has been a tremendous increase in our knowledge of hum motor performance over the last few decades. Our theoretical understanding of how an individual learns to move is sophisticated and complex. It is difficult however to relate much of this information in practical terms to physical educators, coaches, and therapists concerned with the learning of motor skills (Shumway-Cook & Woolcott, 1995). Much of our knowledge stems from lab testing which often appears to bear little relation to real-life situations. This lack of ecological validity has slowed the flow of information from the theorists and researchers to the practitioners. This paper is concerned with taking some small aspects of motor learning theory, unifying them, and presenting them in a usable fashion. The intention is not to present a recipe for teaching motor skills, but to present a framework from which solutions can be found. If motor performance research has taught us anything, it is that every individual and situation presents unique challenges. By increasing our ability to conceptualize the learning situation we should be able to develop more flexible and adaptive responses to the challege of teaching motor skills. The model presented here allows a teacher, coach, or therapist to use readily available observations and known characteristics about a motor task and to conceptualize them in a manner which allows them to make appropriate teaching/learning decisions.