1 resultado para Complexity Metrics
em Coffee Science - Universidade Federal de Lavras
Filtro por publicador
- Aberdeen University (2)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (16)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Argos - Repositorio Institucional de la Secretaría de Investigación y Postgrado de la Facultad de Humanidades y Ciencias Sociales de la Universidad Nacional de Misiones (1)
- Aston University Research Archive (50)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (19)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (111)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (64)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (4)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- CentAUR: Central Archive University of Reading - UK (67)
- Clark Digital Commons--knowledge; creativity; research; and innovation of Clark University (1)
- Cochin University of Science & Technology (CUSAT), India (2)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (29)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- CUNY Academic Works (6)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (16)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (4)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (8)
- Digital Peer Publishing (2)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (5)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (21)
- DRUM (Digital Repository at the University of Maryland) (8)
- Duke University (5)
- Düsseldorfer Dokumenten- und Publikationsservice (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico do Porto, Portugal (5)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (4)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (16)
- Nottingham eTheses (2)
- Open University Netherlands (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (7)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (7)
- Repositório da Produção Científica e Intelectual da Unicamp (36)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (34)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (7)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (1)
- Scielo España (1)
- Scielo Saúde Pública - SP (8)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (40)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (51)
- Université de Montréal, Canada (6)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Michigan (9)
- University of Queensland eSpace - Australia (124)
- University of Southampton, United Kingdom (2)
- University of Washington (4)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Security defects are common in large software systems because of their size and complexity. Although efficient development processes, testing, and maintenance policies are applied to software systems, there are still a large number of vulnerabilities that can remain, despite these measures. Some vulnerabilities stay in a system from one release to the next one because they cannot be easily reproduced through testing. These vulnerabilities endanger the security of the systems. We propose vulnerability classification and prediction frameworks based on vulnerability reproducibility. The frameworks are effective to identify the types and locations of vulnerabilities in the earlier stage, and improve the security of software in the next versions (referred to as releases). We expand an existing concept of software bug classification to vulnerability classification (easily reproducible and hard to reproduce) to develop a classification framework for differentiating between these vulnerabilities based on code fixes and textual reports. We then investigate the potential correlations between the vulnerability categories and the classical software metrics and some other runtime environmental factors of reproducibility to develop a vulnerability prediction framework. The classification and prediction frameworks help developers adopt corresponding mitigation or elimination actions and develop appropriate test cases. Also, the vulnerability prediction framework is of great help for security experts focus their effort on the top-ranked vulnerability-prone files. As a result, the frameworks decrease the number of attacks that exploit security vulnerabilities in the next versions of the software. To build the classification and prediction frameworks, different machine learning techniques (C4.5 Decision Tree, Random Forest, Logistic Regression, and Naive Bayes) are employed. The effectiveness of the proposed frameworks is assessed based on collected software security defects of Mozilla Firefox.