2 resultados para Asturias Central Area
em Coffee Science - Universidade Federal de Lavras
Resumo:
The Lesser Himalayan fold-thrust belt on the south flank of the Jajarkot klippe in west central Nepal was mapped in detail between the Main Central thrust in the north and the Main Boundary thrust in the south. South of the Jajarkot klippe, the fold-thrust belt involves sandstone, shale and carbonate rocks that are unmetamorphosed in the foreland and increase in metamorphic grade with higher structural position to sub-greenschist facies towards the hinterland. The exposed stratigraphy is correlative with the Proterozoic Ranimata, Sangram, Galyang, Syangia Formations and Lakharpata Group of Western Nepal and overlain by the Paleozoic Tansen and Kali Gandaki Groups. Based on field mapping and cross-section construction, three distinct thrust sheets were identified separated by top-to-the-south thrust faults. From the foreland (south) to the hinterland (north), the first thrust sheet in the immediate hanging wall of the Main Boundary thrust defines an open syncline. The second thrust sheet contains a very broad synformal duplex, which is structurally stacked against the third thrust sheet containing a homoclinal panel of the oldest exposed Proterozoic stratigraphy. Outcrop scale folds throughout the study area are predominantly south vergent, open, and asymmetric reflecting the larger regional scale folding style, which corroborate the top-to-the-south deformation style seen in the faults of the region. Field techniques were complemented with microstructural and quartz crystallographic c-axis preferred orientation analyses using a petrographic microscope and a fabric analyzer, respectively. Microstructural analysis identified abundant strain-induced recrystallization textures and occasional occurrences of top-to-the-south shear-sense indicators primarily in the hinterland rocks in the immediate footwall of the Main Central Thrust. Top-to-the-south shearing is also supported by quartz crystallographic c-axis preferred orientations. Quartz recrystallization textures indicate an increase in deformation temperature towards the Main Central thrust. A line balance estimate indicates that approximately 15 km of crustal shortening was accommodated by folding and faulting in the fold-thrust belt south of the Jajarkot klippe. Additionally, estimations of shortening velocity suggest that the shortening velocity operating in this section of the fold-thrust belt between 23 to 14 Ma was slower than what is currently observed as a result of the ongoing deformation of the Sub-Himalayan fold-thrust belt.
Resumo:
Tetradiids are a group of colonial, tubular fossils that occur globally in Middle to Upper Ordovician strata. Tetradiids were first described as a type of tabulate coral; however, based on their four-fold symmetry, division, and presence of a central-sparry canal, they were recently reinterpreted as a florideophyte rhodophyte algae, a reinterpretation that is tested in this thesis. This study focused on understanding the affinity and taphonomy of this order of fossil. Research was conducted by stratigraphic and petrographic analyses of the Black River Group in the Kingston, Ontario region. Tetradiid occurrences were divided into fragment or colonial, with three morphologies of tetradiids described (Tetradium, Phytopsis and Paratetradium). Morphology is specific to depositional environment, with compact Tetradium consistently within ooid grainstones and open branching Phytopsis and chained Paratetradium consistently within mudstones. Two types of patch reefs were recognized: a Paratetradium bioherm, and a Paratetradium, Phytopsis, stromatolite bioherm. The presence of bioherms implies that tetradiids were capable of hypercalcifying. Preservation styles of tetradiids were investigated, and were compared to brachiopods, echinoderms, mollusks, and ooids. Tetradiids were preferentially preserved as molds and demonstrated complete dissolution of skeletal material. Rare specimens, however, demonstrated preserved horizontal partitions, central plates, and a double wall. Skeletal molds were filled with either calcite spar, mud or encrusted by a cryptomicrobial colony. Both calcitic and aragonitic ooids were discovered. The co-occurrence of aragonitic ooids, aragonitic crytodontids, and the evolution of aragonitic, hypercalcifying tetradiids is interpreted as representing the geochemical favoring of aragonite and HMC in a time of global calcite seas. The geochemical favoring of aragonite is interpreted to be independent to global Mg: Ca ratios, but was the result of increased saturation levels and temperature driven by high atmospheric pCO2. Based on the presence of epitheca, tabulae, septa, and the commonality of growth forms, tetradiids are interpreted as an order of Cnidaria. The evolution of an aragonitic skeleton in tetradiids is interpreted to be the result of de novo acquisition of a skeleton from an unmineralized clade.