3 resultados para Arctic regions
em Coffee Science - Universidade Federal de Lavras
Resumo:
Increased temperature and precipitation in Arctic regions have led to deeper thawing and structural instability in permafrost soil. The resulting localized disturbances, referred to as active layer detachments (ALDs), may transport organic matter (OM) to more biogeochemically active zones. To examine this further, solid state cross polarization magic angle spinning 13C nuclear magnetic resonance (CPMAS NMR) and biomarker analysis were used to evaluate potential shifts in riverine sediment OM composition due to nearby ALDs within the Cape Bounty Arctic Watershed Observatory, Nunavut, Canada. In sedimentary OM near ALDs, NMR analysis revealed signals indicative of unaltered plant-derived material, likely derived from permafrost. Long chain acyclic aliphatic lipids, steroids, cutin, suberin and lignin occurred in the sediments, consistent with a dominance of plant-derived compounds, some of which may have originated from permafrost-derived OM released by ALDs. OM degradation proxies for sediments near ALDs revealed less alteration in acyclic aliphatic lipids, while constituents such as steroids, cutin, suberin and lignin were found at a relatively advanced stage of degradation. Phospholipid fatty acid analysis indicated that microbial activity was higher near ALDs than downstream but microbial substrate limitation was prevalent within disturbed regions. Our study suggests that, as these systems recover from disturbance, ALDs likely provide permafrost-derived OM to sedimentary environments. This source of OM, which is enriched in labile OM, may alter biogeochemical patterns and enhance microbial respiration within these ecosystems.
Resumo:
Arctic regions are expected to experience an increase in both temperature and precipitation over the coming decades, which is likely to impact vegetation dynamics and greenhouse gas exchange. To test this response, an experiment was installed at the Cape Bounty Arctic Watershed Observatory, on Melville Island, NU, in 2008 as part of the International Tundra Experiment (ITEX). Snow fences and open top chambers (OTCs) were used to manipulate snow depth and air temperature, respectively. Unlike most ITEX sites to date, enhanced temperature and snowfall were combined here in a factorial design with eight replicates. As an added control, four plots were established well outside the enhanced snow area. Senescence date was recorded at the end of the season, and at the peak of the growing season a vegetation survey was conducted within each plot in order to determine the total percent cover of each plot, as well as the percent cover of individual species. Carbon dioxide (CO2) exchange was also measured within each plot throughout the growing season. The date of senescence occurred significantly earlier in plots which had not been manipulated in any way, compared to all other treatments for all species. Salix arctica showed the greatest increase in cover over time at the species level. Lichen cover increased significantly in the deepened snow plots, and in general there were significant increases in percent cover in some functional groups over time. During June and into July the net CO2 flux was to the atmosphere. It was not until July 27 that these ecosystems became net carbon sinks. However, warming alone resulted in the ecosystem acting as a significant net carbon sink for the entire growing season. Plots exposed to warming alone were estimated to have removed approximately 19.94 g C m-2 from the atmosphere, whereas all other treatments were very similar to one another and estimated to have added approximately 3.12 g C m-2 to the atmosphere. Active layer depth and soil temperatures suggest that plots within the ambient snow zone may be receiving some additional snow due to their proximity to the fences. CO2 fluxes measured within the outer control plots suggest that the effect of warming alone could lead to this ecosystem being an even stronger net C sink under truly ambient snow conditions.
Resumo:
Intensification of permafrost disturbances such as active layer detachments (ALDs) and retrogressive thaw slumps (RTS) have been observed across the circumpolar Arctic. These features are indicators of unstable conditions stemming from recent climate warming and permafrost degradation. In order to understand the processes interacting to give rise to these features, a multidisciplinary approach is required; i.e., interactions between geomorphology, hydrology, vegetation and ground thermal conditions. The goal of this research is to detect and map permafrost disturbance, predict landscape controls over disturbance and determine approaches for monitoring disturbance, all with the goal of contributing to the mitigation of permafrost hazards. Permafrost disturbance inventories were created by applying semi-automatic change detection techniques to IKONOS satellite imagery collected at the Cape Bounty Arctic Watershed Observatory (CBAWO). These methods provide a means to estimate the spatial distribution of permafrost disturbances for a given area for use as an input in susceptibility modelling. Permafrost disturbance susceptibility models were then developed using generalized additive and generalized linear models (GAM, GLM) fitted to disturbed and undisturbed locations and relevant GIS-derived predictor variables (slope, potential solar radiation, elevation). These models successfully delineated areas across the landscape that were susceptible to disturbances locally and regionally when transferred to an independent validation location. Permafrost disturbance susceptibility models are a first-order assessment of landscape susceptibility and are promising for designing land management strategies for remote permafrost regions. Additionally, geomorphic patterns associated with higher susceptibility provide important knowledge about processes associated with the initiation of disturbances. Permafrost degradation was analyzed at the CBAWO using differential interferometric synthetic aperture radar (DInSAR). Active-layer dynamics were interpreted using inter-seasonal and intra-seasonal displacement measurements and highlight the importance of hydroclimatic factors on active layer change. Collectively, these research approaches contribute to permafrost monitoring and the assessment of landscape-scale vulnerability in order to develop permafrost disturbance mitigation strategies.