2 resultados para Analytical Model

em Coffee Science - Universidade Federal de Lavras


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In typical theoretical or experimental studies of heat migration in discrete fractures, conduction and thermal dispersion are commonly neglected from the fracture heat transport equation, assuming heat conduction into the matrix is predominant. In this study analytical and numerical models are used to investigate the significance of conduction and thermal dispersion in the plane of the fracture for a point and line sources geometries. The analytical models account for advective, conductive and dispersive heat transport in both the longitudinal and transverse directions in the fracture. The heat transport in the fracture is coupled with a matrix equation in which heat is conducted in the direction perpendicular to the fracture. In the numerical model, the governing heat transport processes are the same as the analytical models; however, the matrix conduction is considered in both longitudinal and transverse directions. Firstly, we demonstrate that longitudinal conduction and dispersion are critical processes that affect heat transport in fractured rock environments, especially for small apertures (eg. 100 μm or less), high flow rate conditions (eg. velocity greater than 50 m/day) and early time (eg. less than 10 days). Secondly, transverse thermal dispersion in the fracture plane is also observed to be an important transport process leading to retardation of the migrating heat front particularly at late time (eg. after 40 days of hot water injection). Solutions which neglect dispersion in the transverse direction underestimate the locations of heat fronts at late time. Finally, this study also suggests that the geometry of the heat sources has significant effects on the heat transport in the system. For example, the effects of dispersion in the fracture are observed to decrease when the width of the heat source expands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This research explores whether civil society organizations (CSOs) can contribute to more effectively regulating the working conditions of temporary migrant farmworkers in North America. This dissertation unfolds in five parts. The first part of the dissertation sets out the background context. The context includes the political economy of agriculture and temporary migrant labour more broadly. It also includes the political economy of the legal regulations that govern immigration and work relations. The second part of the research builds an analytical model for studying the operation of CSOs active in working with the migrant farmworker population. The purpose of the analytical framework is to make sense of real-world examples by providing categories for analysis and a means to get at the channels of influence that CSOs utilize to achieve their aims. To this end, the model incorporates the insights from three significant bodies of literature—regulatory studies, labour studies, and economic sociology. The third part of the dissertation suggests some key strategic issues that CSOs should consider when intervening to assist migrant farmworkers, and also proposes a series of hypotheses about how CSOs can participate in the regulatory process. The fourth part probes and extends these hypotheses by empirically investigating the operation of three CSOs that are currently active in assisting migrant farm workers in North America: the Agricultural Workers Alliance (Canada), Global Workers’ Justice Alliance (USA), and the Coalition of Immokalee Workers (USA). The fifth and final part draws together lessons from the empirical work and concluded that CSOs can fill gaps left by the waning power of actors, such as trade unions and labour inspectorates, as well as act in ways that these traditional actors can not.