4 resultados para émotions

em Coffee Science - Universidade Federal de Lavras


Relevância:

10.00% 10.00%

Publicador:

Resumo:

My thesis thinks through the ways Newtonian logics require linear mobility in order to produce narratives of progress. I argue that this linear mobility, and the resulting logics, potentially erases the chaotic and non-linear motions that are required to navigate a colonial landscape. I suggest that these non-linear movements produce important critiques of the seeming stasis of colonial constructs and highlight the ways these logics must appear neutral and scientific in an attempt to conceal the constant and complex adjustments these frameworks require. In order to make room for these complex motions, I develop a quantum intervention. Specifically, I use quantum physics as a metaphor to think through the significance of black life, the double-consciousness ofland, and the intricate motions of sound. In order to put forth this intervention, I look at news coverage of Hurricane Katrina, Du Boisâs characterization of land in Souls of Black Folks, and the aural mobilities of blackness articulated in an academic discussion and interview about post- humanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurement of joint kinematics can provide knowledge to help improve joint prosthesis design, as well as identify joint motion patterns that may lead to joint degeneration or injury. More investigation into how the hip translates in live human subjects during high amplitude motions is needed. This work presents a design of a non-invasive method using the registration between images from conventional Magnetic Resonance Imaging (MRI) and open MRI to calculate three dimensional hip joint kinematics. The method was tested on a single healthy subject in three different poses. MRI protocols for the conventional gantry, high-resolution MRI and the open gantry, lowresolution MRI were developed. The scan time for the low-resolution protocol was just under 6 minutes. High-resolution meshes and low resolution contours were derived from segmentation of the high-resolution and low-resolution images, respectively. Low-resolution contours described the poses as scanned, whereas the meshes described the bonesâ geometries. The meshes and contours were registered to each other, and joint kinematics were calculated. The segmentation and registration were performed for both cortical and sub-cortical bone surfaces. A repeatability study was performed by comparing the kinematic results derived from three usersâ segmentations of the sub-cortical bone surfaces from a low-resolution scan. The root mean squared error of all registrations was below 1.92mm. The maximum range between segmenters in translation magnitude was 0.95mm, and the maximum deviation from the average of all orientations was 1.27â¦. This work demonstrated that this method for non-invasive measurement of hip kinematics is promising for measuring high-range-of-motion hip motions in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent work has focused on deepening our understanding of the molecular origins of the higher harmonics that arise in the shear stress response of polymeric liquids in large-amplitude oscillatory shear flow. For instance, these higher harmonics have been explained by just considering the orientation distribution of rigid dumbbells suspended in a Newtonian solvent. These dumbbells, when in dilute suspension, form the simplest relevant molecular model of polymer viscoelasticity, and this model specifically neglects interactions between the polymer molecules [R.B. Bird et al., J Chem Phys, 140, 074904 (2014)]. In this paper, we explore these interactions by examining the Curtiss-Bird model, a kinetic molecular theory designed specifically to account for the restricted motions that arise when polymer chains are concentrated, thus interacting and specifically, entangled. We begin our comparison using a heretofore ignored explicit analytical solution [Fan and Bird, JNNFM, 15, 341 (1984)]. For concentrated systems, the chain motion transverse to the chain axis is more restricted than along the axis. This anisotropy is described by the link tension coefficient, ε, for which several special cases arise: ε = 0 corresponds to reptation, ε > 1/8 to rod-climbing, 1/2 ⥠ε ⥠3/4 to reasonable predictions for shear-thinning in steady simple shear flow, and ε = 1 to the dilute solution without hydrodynamic interaction. In this paper, we examine the shapes of the shear stress versus shear rate loops for the special cases ε = (0,1/8, 3/8,1) , and we compare these with those of rigid dumbbell and reptation model predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To find examples of effecient locomotion and manoeuvrability, one need only turn to the elegant solutions natural flyers and swimmers have converged upon. This dissertation is specifically motivated by processes of evolutionary convergence, which have led to the propulsors and body shapes in nature that exhibit strong geometric collapse over diverse scales. These body features are abstracted in the studies presented herein using low-aspect-ratio at plates and a three-dimensional body of revolution (a sphere). The highly-separated vortical wakes that develop during accelerations are systematically characterized as a function of planform shape, aspect ratio, Reynolds number, and initial boundary conditions. To this end, force measurements and time-resolved (planar) particle image velocimetry have been used throughout to quantify the instantaneous forces and vortex evolution in the wake of the bluff bodies. During rectilinear motions, the wake development for the flat plates is primarily dependent on plate aspect ratio, with edge discontinuities and curvature playing only a secondary role. Furthermore, the axisymmetric case, i.e. the circular plate, shows strong sensitivity to Reynolds number, while this sensitivity quickly diminishes with increasing aspect ratio. For rotational motions, global insensitivity to plate aspect ratio has been observed. For the sphere, it has been shown that accelerations play an important role in the mitigation of flow separation. These results - expounded upon in this dissertation - have begun to shed light on the specific vortex dynamics that may be coopted by flying and swimming species of all shapes and sizes towards efficient locomotion.