106 resultados para PORT AUTHORITY OF BARCELONA
Resumo:
Regular classroom teachers, who often report that they lack adequate training and resources, increasingly find themselves supporting students with special education needs (Connelly & Graham, 2009). Teachers working in challenging environments can thrive in their role and continue to experience professional growth and passion about their work with students with exceptionalities (Perry, Brenner, Collie, & Hofer, 2015). Thriving is one framework of psychological wellness that can provide insight into the experiences of teachers working with exceptional learners (Spreitzer & Porath, 2014). Chronic stress from occupational demands such as heavy workload and insufficient resources can negatively affect the wellbeing of teachers and lead to poor mental health (Desrumaux et al., 2015). Burnout and compassion fatigue are two constructs of poor mental health that can inform our understanding of teachers’ social and emotional experiences. The purpose of this study was to explore the social and emotional experiences of teachers working with exceptional learners in regular classrooms. The objective of this study was to describe the elements within teachers’ professional roles that they report contribute to their social and emotional experiences understood through the lenses of thriving, burnout, and compassion fatigue. Interviews were conducted with five teachers: one full-time in-service teacher and four teachers who are pursuing graduate studies in education. The theme of thriving emerged as a significant component of the interview with all five participants. All five participants described experiences of vitality and learning as essential to their workplace satisfaction and overall thriving. Although the data from this study did not suggest that participants were experiencing burnout or compassion fatigue, elements of the two constructs did emerge as relevant to the social-emotional experiences of the teachers.
Resumo:
Proline (Pro) is a unique amino acid that has been examined previously as a potential chiral selector for high-performance liquid chromatography. In recent years, a new class of promising Pro based enantioselective stationary phases has been studied and the longer peptides were found to be competitive with commercial chiral stationary phases (CSPs). Here, we aim to perform a comprehensive examination of a t-butoxycarbonyl- (t-Boc-) terminated monoproline selector. This selector was grafted through an amide linkage to an aminopropyl siloxane-terminated Si (111) wafer and to a silicon atomic force microscopy tip. To ensure a flat, homogeneous overlayer of selectors suitable for force spectrometric measurements, the prepared surfaces were characterized using XPS, AFM and contact angle measurements. Chemical force spectrometry (CFS) has been used to examine the chiral discrimination in our monoproline CSP by measuring the interaction forces between two D- or L-monoproline monolayers in water and in the presence of a series of amino acids in solution to explore the degree to which binding of amino acids impacts self-selectivity. Chemical force titration (CFT) has been used to observe the influence of variations in pH on the binding interaction of proline modified chiral surfaces. Here we aim to explore the connection between side-chain hydrophobicity and differences in the nature of the binding between different ionic forms of amino acids and the t-Boc-Pro interface, and thereby to gain insight into the mechanism of chiral selectivity. The CFS results show several trends for different proline selector/amino acid combinations and indicate that the binding characteristics of amino acid to the proline surface is strongly dependent on the amino acid side chain where hydrophilic side chain amino acids exhibit a selectivity opposite to that seen for those with hydrophobic side chains. The CFT studies also provide valuable insights into interactions between the proline selector and the amino acids under a wide range of pH conditions, indicating that protonated amine groups of alanine and serine are closely involved in the binding mechanism to proline surfaces. On the other hand, the presence of the second carboxylic group in aspartic acid plays an important role while interacting with proline.
Resumo:
Despite the development of improved performance test protocols by renowned researchers, there are still road networks which experience premature cracking and failure. One area of major concern in asphalt science and technology, especially in cold regions in Canada is thermal (low temperature) cracking. Usually right after winter periods, severe cracks are seen on poorly designed road networks. Quality assurance tests based on improved asphalt performance protocols have been implemented by government agencies to ensure that roads being constructed are at the required standard but asphalt binders that pass these quality assurance tests still crack prematurely. While it would be easy to question the competence of the quality assurance test protocols, it should be noted that performance tests which are being used and were repeated in this study, namely the extended bending beam rheometer (EBBR) test, double edge-notched tension test (DENT), dynamic shear rheometer (DSR) test and X-ray fluorescence (XRF) analysis have all been verified and proven to successfully predict asphalt pavement behaviour in the field. Hence this study looked to probe and test the quality and authenticity of the asphalt binders being used for road paving. This study covered thermal cracking and physical hardening phenomenon by comparing results from testing asphalt binder samples obtained from the storage ‘tank’ prior to paving (tank samples) and recovered samples for the same contracts with aim of explaining why asphalt binders that have passed quality assurance tests are still prone to fail prematurely. The study also attempted to find out if the short testing time and automated procedure of torsion bar experiments can replace the established but tedious procedure of the EBBR. In the end, it was discovered that significant differences in performance and composition exist between tank and recovered samples for the same contracts. Torsion bar experimental data also indicated some promise in predicting physical hardening.
Resumo:
A number of supported and un-supported Oxygen Evolution Reaction (OER) iridium based electrocatalysts for Polymer Electrolyte Membrane Water Electrolysis (PEMWE) were synthesized using a polyol method. The electrocatalysts and the supports were characterized using a wide range of physical and electrochemical characterization methods. The effect of morphological characteristics of the OER electrocatalyst and the support on the OER activity was studied. The results of this thesis contribute to the existing research to reduce the cost of PEMWE by enhancing the utilization of precious metal for OER electrocatalysis. Iridium electrocatalysts supported on antimony tin oxide (Ir/ATO) were synthesized using the polyol method with two different heating techniques: conventional and microwave-irradiation. It was shown that the physical morphology and electrochemical properties of Ir/ATO synthesized with the two heating methods were comparable. However, the microwave irradiation method was extremely faster than the conventional heating method. Additionally, the effect of heat treatment (calcination temperature) on the morphology and OER activity of Ir/ATO synthesized electrocatalyst with the conventional polyol method. It was found that the iridium electrocatalyst synthesized with the polyol method, consisted of 1-5 nm particles, possessed an amorphous structure, and contained iridium with an average oxidation state of less than +4. Calcining the catalyst at temperatures more than 400 ºC and less than 700ºC: 1) increased the size of the iridium particles to 30 nm, 2) changed the structure of iridium particles from amorphous to crystalline, 3) increased the iridium oxidation state to +4 (IrO2), 4) reduced the electrochemically active surface area by approximately 50%, and 5) reduced the OER activity by approximately 25%; however, it had no significant effect on the physical and chemical morphology of the ATO support. Moreover, potential support metal carbides and oxides including: Tantalum Carbide (TaC), Niobium Oxide (Nb2O5), Niobium Carbide (NbC), Titanium Carbide (TiC), Tungsten Carbide (WC) and Antimony-doped Tin Oxide (ATO, Sb2O5-SnO2), were characterized, and used as support for the iridium OER electrocatalysts. TaC was found to be a promising support, and increasing its surface area by 4% improved the OER performance of the final supported catalyst by approximately 50%.
Resumo:
A number of laws in Canada which uphold rights are referred to as quasi-constitutional by the courts in recognition of their special importance. Quasi-constitutional statutes are enacted through the regular legislative process, although they are being interpreted and applied in a fashion which has become remarkably similar to constitutional law, and are therefore having an important affect over other legislation. Quasi-constitutionality has surprisingly received limited scholarly attention, and very few serious attempts at explaining its significance have been made. This dissertation undertakes a comprehensive study of quasi-constitutionality which considers its theoretical basis, its interpretation and legal significance, as well as its similarities to comparable forms of law in other Commonwealth jurisdictions. Part I examines the theoretical basis of quasi-constitutionality and its relationship to the Constitution. As a statutory and common law form of fundamental law, quasi-constitutionality is shown to signify an association with the Canadian Constitution and the foundational principles that underpin it. Part II proceeds to consider the special rules of interpretation applied to quasi-constitutional legislation, the basis of this interpretative approach, and the connection between the interpretation of similar provisions in quasi-constitutional legislation and the Constitution. As a statutory form of fundamental law, quasi-constitutional legislation is given a broad, liberal and purposive interpretation which significantly expands the rights which they protect. The theoretical basis of this approach is found in both the fundamental nature of the rights upheld by quasi-constitutional legislation as well as legislative intent. Part III explores how quasi-constitutional statutes affect the interpretation of regular legislation and how they are used for the purposes of judicial review. Quasi-constitutional legislation has a significant influence over regular statutes in the interpretative exercise, which in some instances results in conflicting statutes being declared inoperable. The basis of this form of judicial review is demonstrated to be rooted in statutory interpretation, and as such it provides an interesting model of rights protection and judicial review that is not conflated to constitutional and judicial supremacy.
Resumo:
Traditional knowledge associated with genetic resources (TKaGRs) is acknowledged as a valuable resource. Its value draws from economic, social, cultural, and innovative uses. This value places TK at the heart of competing interests as between indigenous peoples who hold it and depend on it for their survival, and profitable industries which seek to exploit it in the global market space. The latter group seek, inter alia, to advance and maintain their global competitiveness by exploiting TKaGRs leads in their research and development activities connected with modern innovation. Biopiracy remains an issue of central concern to the developing world and has emerged in this context as a label for the inequity arising from the misappropriation of TKaGRs located in the South by commercial interests usually located in the North. Significant attention and resources are being channeled at global efforts to design and implement effective protection mechanisms for TKaGRs against the incidence of biopiracy. The emergence and recent entry into force of the Nagoya Protocol offers the latest example of a concluded multilateral effort in this regard. The Nagoya Protocol, adopted on the platform of the Convention on Biological Diversity (CBD), establishes an open-ended international access and benefit sharing (ABS) regime which is comprised of the Protocol as well as several complementary instruments. By focusing on the trans-regime nature of biopiracy, this thesis argues that the intellectual property (IP) system forms a central part of the problem of biopiracy, and so too to the very efforts to implement solutions, including through the Nagoya Protocol. The ongoing related work within the World Intellectual Property Organization (WIPO), aimed at developing an international instrument (or a series of instruments) to address the effective protection of TK, constitutes an essential complementary process to the Nagoya Protocol, and, as such, forms a fundamental element within the Nagoya Protocol’s evolving ABS regime-complex. By adopting a third world approach to international law, this thesis draws central significance from its reconceptualization of biopiracy as a trans-regime concept. By construing the instrument(s) being negotiated within WIPO as forming a central component part of the Nagoya Protocol, this dissertation’s analysis highlights the importance of third world efforts to secure an IP-based reinforcement to the Protocol for the effective eradication of biopiracy.
Resumo:
Polychlorinated biphenyls (PCBs) and substituted phenylamine antioxidants (SPAs) are two chemical groups that have been used in multiple Canadian industrial processes. Despite the production ban of PCBs in North America in 1977, they are still ubiquitous in the environment and in wildlife tissues. Previous studies of fish, amphibians, birds, and mammals have shown that PCBs are toxic and act as endocrine disruptors. In contrast, SPAs, specifically N-phenyl-1-naphthylamine (PANA), have received very little attention despite their current use in Canada and their expected environmental releases. The effects of PCB and PANA exposures in reptiles remain unknown thus, juvenile Chelydra serpentina were used in this thesis as a model vertebrate to fill in missing toxicity research gaps due to their importance as an environmental indicator. First, food pellets were spiked at an environmentally relevant concentration of the PCB mixture Aroclor 1254 (A1254) to model hepatic bioaccumulation (0.45 μg/g A1254 for 31 days) and depuration (clean food for 50 days) of PCBs in turtles. No significant differences in PCB concentrations were observed between the control and treated animals, suggesting that juvenile turtles exposed to environmentally relevant concentrations of PCBs can likely detoxify low concentrations of PCBs. Additionally, two dose-response experiments were performed using A1254 or PANA spiked food (0-12.7 μg/g and 0-3,446 μg/g, respectively) to determine hepatic toxicity and bioaccumulation in juvenile C. serpentina. An increase in hepatic cyp1a was observed when exposed to the highest dose of both chemicals: 1) for A1254, induction correlated to the significant increase in hepatic PCB congeners that are known to be metabolized by CYP1A; and 2) for PANA, induction suggested that CYP1A has a potential role in its detoxification. PCBs are known endocrine disruptors, but no significant changes were observed for both thyroid receptors (alpha and beta) or by estrogen and androgen receptors. This lack of response, also noted in the PANA exposure, suggests that C. serpentina is less sensitive to endocrine disruption than other vertebrates. Furthermore, the expression of genes involved in cellular stress was not altered in PCB and PANA exposed animals, supporting the resilience of turtles to oxidative stress. This is the first study to demonstrate the toxicity of PCBs and PANA in C. serpentina, demonstrating the turtle’s high tolerance to contamination.
Resumo:
Conventional rockmass characterization and analysis methods for geotechnical assessment in mining, civil tunnelling, and other excavations consider only the intact rock properties and the discrete fractures that are present and form blocks within rockmasses. Field logging and classification protocols are based on historically useful but highly simplified design techniques, including direct empirical design and empirical strength assessment for simplified ground reaction and support analysis. As modern underground excavations go deeper and enter into more high stress environments with complex excavation geometries and associated stress paths, healed structures within initially intact rock blocks such as sedimentary nodule boundaries and hydrothermal veins, veinlets and stockwork (termed intrablock structure) are having an increasing influence on rockmass behaviour and should be included in modern geotechnical design. Due to the reliance on geotechnical classification methods which predate computer aided analysis, these complexities are ignored in conventional design. Given the comparatively complex, sophisticated and powerful numerical simulation and analysis techniques now practically available to the geotechnical engineer, this research is driven by the need for enhanced characterization of intrablock structure for application to numerical methods. Intrablock structure governs stress-driven behaviour at depth, gravity driven disintegration for large shallow spans, and controls ultimate fragmentation. This research addresses the characterization of intrablock structure and the understanding of its behaviour at laboratory testing and excavation scales, and presents new methodologies and tools to incorporate intrablock structure into geotechnical design practice. A new field characterization tool, the Composite Geological Strength Index, is used for outcrop or excavation face evaluation and provides direct input to continuum numerical models with implicit rockmass structure. A brittle overbreak estimation tool for complex rockmasses is developed using field observations. New methods to evaluate geometrical and mechanical properties of intrablock structure are developed. Finally, laboratory direct shear testing protocols for interblock structure are critically evaluated and extended to intrablock structure for the purpose of determining input parameters for numerical models with explicit structure.
Resumo:
This thesis investigates the rotational behavior of abstracted small-wind-turbine rotors exposed to a sudden increase in oncoming flow velocity, i.e. a gust. These rotors consisted of blades with aspect ratios characteristic of samara seeds, which are known for their ability to maintain autorotation in unsteady wind. The models were tested in a towing tank using a custom-built experimental rig. The setup was designed and constructed to allow for the measurement of instantaneous angular velocity of a rotor model towed at a prescribed kinematic profile along the tank. The conclusions presented in this thesis are based on the observed trends in effective angle-of-attack distribution, tip speed ratio, angular velocity, and time delay in the rotational response for each of rotors over prescribed gust cases. It was found that the blades with the higher aspect ratio had higher tip speed ratios and responded faster than the blades with a lower aspect ratio. The decrease in instantaneous tip speed ratio during the onset of a prescribed gust correlated with the time delay in each rotor model's rotational response. The time delays were found to increase nonlinearly with decreasing durations over which the simulated gusts occurred.
Resumo:
Binge eating occurs primarily on highly palatable food (PF) suggesting that the reward value of food has an important role in this behaviour. Bingeing also leads to reward dysfunction in rats and humans. The rewarding effect of binge eating may involve opioid mechanisms as opioid antagonists reduce PF consumption in animals that binge eat and binge eating produces neuroadaptations of opioid receptors in rodents. We tested this hypothesis by using the conditioned place preference (CPP) paradigm. First we established a sucrose CPP in male and female Long-Evans rats (n=8 for each group) using 1%, 5%, 15%, or 30% sucrose solution. Next, rats underwent the sucrose bingeing model in which separate groups of rats (n=8 for each group) received 12hr and 24hr access to 10% sucrose solution and chow, 12hr access to 0.1% saccharin solution and chow, or 12hr access to chow only every day for 28 days. Immediately following these sessions, rats were conditioned and tested in the CPP paradigm using a 15% sucrose solution. Finally, we examined whether the sucrose bingeing model altered morphine reward in female rats. Rats (n=8 for each group) received 12hr and 24hr access to 10% sucrose solution and chow every day for 28 days. Immediately following this access period, rats were conditioned to morphine (6mL/kg) or saline solution in the CPP paradigm and tested for a CPP. In all experiments, rats drank more sucrose solution than water during conditioning sessions. Male rats did not develop a CPP to any concentration of sucrose solution and females developed a CPP to 15% sucrose solution only. Following the sucrose bingeing protocol, sucrose CPP was attenuated in male rats that binged on sucrose and in all female rats. Sucrose bingeing in females did not affect the development of a CPP to morphine. These results suggest that sucrose consumption and sucrose CPP are measures of different psychological components of reward. Furthermore, sucrose bingeing reduces the rewarding effect of sucrose, but not morphine, suggesting that opioid reward is still intact.
Resumo:
To find examples of effecient locomotion and manoeuvrability, one need only turn to the elegant solutions natural flyers and swimmers have converged upon. This dissertation is specifically motivated by processes of evolutionary convergence, which have led to the propulsors and body shapes in nature that exhibit strong geometric collapse over diverse scales. These body features are abstracted in the studies presented herein using low-aspect-ratio at plates and a three-dimensional body of revolution (a sphere). The highly-separated vortical wakes that develop during accelerations are systematically characterized as a function of planform shape, aspect ratio, Reynolds number, and initial boundary conditions. To this end, force measurements and time-resolved (planar) particle image velocimetry have been used throughout to quantify the instantaneous forces and vortex evolution in the wake of the bluff bodies. During rectilinear motions, the wake development for the flat plates is primarily dependent on plate aspect ratio, with edge discontinuities and curvature playing only a secondary role. Furthermore, the axisymmetric case, i.e. the circular plate, shows strong sensitivity to Reynolds number, while this sensitivity quickly diminishes with increasing aspect ratio. For rotational motions, global insensitivity to plate aspect ratio has been observed. For the sphere, it has been shown that accelerations play an important role in the mitigation of flow separation. These results - expounded upon in this dissertation - have begun to shed light on the specific vortex dynamics that may be coopted by flying and swimming species of all shapes and sizes towards efficient locomotion.
Resumo:
TET2 is a tumor suppressor gene that has been implicated in the epigenetic regulation of gene expression. Inactivating TET2 mutations are common in MDS. These mutations may contribute to early clonal dominance and myeloid transformation, although the exact mechanisms remain to be elucidated. Common to the environment of MDS are elevations in cytokines, such as TNFα and IFN-γ. It was hypothesized that inflammatory cytokines TNF-α and IFN-γ may promote clonal expansion of TET2 mutant progenitors. Adult (10-14 weeks-old) Tet2 wild type (+/+) and Tet2 mutant (-/-) C57BL/6 mice strains were chosen as a model system. Lineage negative cells (Lin-), enriched for hematopoietic stem and progenitor cells, were isolated from Tet2 +/+ and -/- bone marrow and cultured in the absence or presence of varying concentrations of TNFα or IFN-γ in methylcellulose colony formation assays and long term cell culture assays, over a period of 12 and 30 days respectively, and their colony growth, cell count, immunophenotype and resistance to apoptosis were examined. Where indicated, serial re-plating was performed. Expression of apoptotic regulators was assessed by qRT-PCR. In the triplicate experiments, starting with equal densities of Tet2 +/+ and -/- Lin- cells, Tet2 -/- Lin- cells displayed increased resistance to cytokine-induced growth suppression and superior colony forming ability over +/+ in the serial re-plating assays under stress of increasing TNFα or IFN γ. Tet2 -/- progenitors also displayed a lower apoptotic index compared to +/+ under stress of increasing TNFα, suggesting increased resistance to TNFα induced apoptosis. Transcriptional data showed low expression of Tnfr1, Fas and caspase 8, as well as a high expression of Bcl-2 and Iap1 in Tet2 -/- compared to +/+ under stress of TNFα. Tet2-/- also showed increased basal expression of endogenous TNFα mRNA compared to +/+. In the human colony growth assay, the clonal growth of TET2 mutant CFU-GM progenitors was enhanced at low TNFα concentrations. Conclusion: Mutations that promote resistance to environmental stem cell stressors are a known mechanism of clonal selection in aplastic anaemia and JAK2-mutant MPN and our findings suggest that this mechanism may be critical to clonal selection and dominance in MDS.
Resumo:
The application of 3D grain-based modelling techniques is investigated in both small and large scale 3DEC models, in order to simulate brittle fracture processes in low-porosity crystalline rock. Mesh dependency in 3D grain-based models (GBMs) is examined through a number of cases to compare Voronoi and tetrahedral grain assemblages. Various methods are used in the generation of tessellations, each with a number of issues and advantages. A number of comparative UCS test simulations capture the distinct failure mechanisms, strength profiles, and progressive damage development using various Voronoi and tetrahedral GBMs. Relative calibration requirements are outlined to generate similar macro-strength and damage profiles for all the models. The results confirmed a number of inherent model behaviors that arise due to mesh dependency. In Voronoi models, inherent tensile failure mechanisms are produced by internal wedging and rotation of Voronoi grains. This results in a combined dependence on frictional and cohesive strength. In tetrahedral models, increased kinematic freedom of grains and an abundance of straight, connected failure pathways causes a preference for shear failure. This results in an inability to develop significant normal stresses causing cohesional strength dependence. In general, Voronoi models require high relative contact tensile strength values, with lower contact stiffness and contact cohesional strength compared to tetrahedral tessellations. Upscaling of 3D GBMs is investigated for both Voronoi and tetrahedral tessellations using a case study from the AECL’s Mine-by-Experiment at the Underground Research Laboratory. An upscaled tetrahedral model was able to reasonably simulate damage development in the roof forming a notch geometry by adjusting the cohesive strength. An upscaled Voronoi model underestimated the damage development in the roof and floor, and overestimated the damage in the side-walls. This was attributed to the discretization resolution limitations.
Resumo:
Recent developments have made researchers to reconsider Lagrangian measurement techniques as an alternative to their Eulerian counterpart when investigating non-stationary flows. This thesis advances the state-of-the-art of Lagrangian measurement techniques by pursuing three different objectives: (i) developing new Lagrangian measurement techniques for difficult-to-measure, in situ flow environments; (ii) developing new post-processing strategies designed for unstructured Lagrangian data, as well as providing guidelines towards their use; and (iii) presenting the advantages that the Lagrangian framework has over their Eulerian counterpart in various non-stationary flow problems. Towards the first objective, a large-scale particle tracking velocimetry apparatus is designed for atmospheric surface layer measurements. Towards the second objective, two techniques, one for identifying Lagrangian Coherent Structures (LCS) and the other for characterizing entrainment directly from unstructured Lagrangian data, are developed. Finally, towards the third objective, the advantages of Lagrangian-based measurements are showcased in two unsteady flow problems: the atmospheric surface layer, and entrainment in a non-stationary turbulent flow. Through developing new experimental and post-processing strategies for Lagrangian data, and through showcasing the advantages of Lagrangian data in various non-stationary flows, the thesis works to help investigators to more easily adopt Lagrangian-based measurement techniques.
Resumo:
In recent years, the 380V DC and 48V DC distribution systems have been extensively studied for the latest data centers. It is widely believed that the 380V DC system is a very promising candidate because of its lower cable cost compared to the 48V DC system. However, previous studies have not adequately addressed the low reliability issue with the 380V DC systems due to large amount of series connected batteries. In this thesis, a quantitative comparison for the two systems has been presented in terms of efficiency, reliability and cost. A new multi-port DC UPS with both high voltage output and low voltage output is proposed. When utility ac is available, it delivers power to the load through its high voltage output and charges the battery through its low voltage output. When utility ac is off, it boosts the low battery voltage and delivers power to the load form the battery. Thus, the advantages of both systems are combined and the disadvantages of them are avoided. High efficiency is also achieved as only one converter is working in either situation. Details about the design and analysis of the new UPS are presented. For the main AC-DC part of the new UPS, a novel bridgeless three-level single-stage AC-DC converter is proposed. It eliminates the auxiliary circuit for balancing the capacitor voltages and the two bridge rectifier diodes in previous topology. Zero voltage switching, high power factor, and low component stresses are achieved with this topology. Compared to previous topologies, the proposed converter has a lower cost, higher reliability, and higher efficiency. The steady state operation of the converter is analyzed and a decoupled model is proposed for the converter. For the battery side converter as a part of the new UPS, a ZVS bidirectional DC-DC converter based on self-sustained oscillation control is proposed. Frequency control is used to ensure the ZVS operation of all four switches and phase shift control is employed to regulate the converter output power. Detailed analysis of the steady state operation and design of the converter are presented. Theoretical, simulation, and experimental results are presented to verify the effectiveness of the proposed concepts.