179 resultados para Kingston
Resumo:
Purpose: Osteophytes are osteo-cartilaginous metaplastic tissue outgrowths of bone capped by cartilage usually found in degenerative and inflammatory joint disease. The presence and degree of maturity of osteophytes, along with joint space narrowing, are the main radiographic criteria for diagnosis and grading osteoarthritis (OA). Although osteophytes are known for being anatomic signs of advanced OA, they can occur in non-symptomatic joints, in joints with no other observable alterations, and in early stage OA. It remains unclear if they develop from molecular, physiological and/or mechanical stimuli. We hypothesized that mechanical strains play a role in osteophyte development. The overall objective of this thesis was to find evidence that osteophytes are influenced by mechanical strains. Methods: The first project was to develop a mechanically-induced osteophyte animal model. One single impact load that was reported to induce moderate joint damage was applied to the periosteum of the rat knee. Animals were sacrificed at four time points to characterize the evolution of damaged tissue and the joint by histology. A second study using human mature hip osteophytes was conducted to evaluate if mature osteophyte presented histological signs of proliferating and developmental processes. The histological characterization of mature osteophyte was used to compare findings of the mechanically-induced osteophyte in the animal model to validate the use of this rodent model in studying some aspect of osteophyte development of human. Lastly, a detailed three-dimensional (3D) radiological morphometric analysis was performed on microscopic computed tomography (µCT) scanned femoral heads collected from total hip arthroplasty patients presenting mature hip osteophytes. Quantitative morphometric measures of osteophytes internal structure was compared to three regions of the femoral head of known quality of organisation and mechanical constraint. Results and Conclusion: Osteophyte can be mechanically induced by a single load impact to the joint periosteum, indicating that a moderate trauma to the periosteal layer of the joint may play a role in osteophyte development. Mature osteophytes have proliferation, developing and remodelling zones and have trabecular structures. Mechanically-induced osteophytes and mature osteophytes presented similar histological composition. Mature osteophytes have organized internal structure. These results provide evidence that mechanical strain can influence osteophyte development.
Resumo:
The question that I will explore in this research dissertation is whether one can defend the rights of homeland minorities as a progressive extension of the existing norms of human rights. This question calls for several deeper inquiries about the nature, the function and the underlying justifications for both human rights and minority rights. In particular, this research project will examine the following issues: on what normative grounds the available norms of human rights and minority rights are justified; if there is any methodic way to use the normative logic of human rights to support substantial forms of minority claims, such as the right to self-determination; whether human rights can take the form of group rights; and finally, whether there is any non-sectarian basis for justifying the minority norms, which can be acceptable from both liberal and non-liberal perspectives. This research project has some implications for both theories of minority rights and human rights. On the one hand, the research employs the topic of minority rights to shed light on deficiencies of the existing political theories of human rights. On the other hand, it uses the political theory to shed light on how existing theories of minority rights could be improved and amended. The inquiry will ultimately clarify how to judge the merit of the claim that minority rights are or should be a part of human rights norms.
Resumo:
The objectives of this thesis were to study specific Canadian populations in order to examine; (1) relationships between the neighbourhood-level social capital and injuries in youth, as well as (2) falls in older adults, and; (3) to address methodological issues relevant to the study of such relationships. The thesis is comprised of four manuscripts. The first addresses methodological issues surrounding the validation of neighbourhood-level variables for the study of adolescent health, and demonstrates the existence of structural confounding in the study of related etiological relationships. Informed by the latter, the second manuscript examines the association between neighbourhood-level social capital and injuries in youth, and demonstrates that lower levels of social capital are protective factors for girls but not for boys. Manuscript 3 uses an international database focused on older adults, and shows that our existing measure of social capital is valid at neighbourhood levels, but also that there is a high possibility for the existence of structural confounding among Canadian older adults. The fourth manuscript then examines the association between neighbourhood-level social capital and the occurrence of falls in older adults and determines that differences between neighbourhoods are important factors in the occurrence of falls, and that higher levels of social capital are a risk factor for falls. Taken together, results from this thesis provide a better understanding of the role of neighbourhood-level social capital on the occurrence of injuries in Canadian youth and on the occurrence of falls in older adults. Our contributions were important both methodologically and etiologically.
Resumo:
In modern power electronics equipment, it is desirable to design a low profile, high power density, and fast dynamic response converter. Increases in switching frequency reduce the size of the passive components such as transformers, inductors, and capacitors which results in compact size and less requirement for the energy storage. In addition, the fast dynamic response can be achieved by operating at high frequency. However, achieving high frequency operation while keeping the efficiency high, requires new advanced devices, higher performance magnetic components, and new circuit topology. These are required to absorb and utilize the parasitic components and also to mitigate the frequency dependent losses including switching loss, gating loss, and magnetic loss. Required performance improvements can be achieved through the use of Radio Frequency (RF) design techniques. To reduce switching losses, resonant converter topologies like resonant RF amplifiers (inverters) combined with a rectifier are the effective solution to maintain high efficiency at high switching frequencies through using the techniques such as device parasitic absorption, Zero Voltage Switching (ZVS), Zero Current Switching (ZCS), and a resonant gating. Gallium Nitride (GaN) device technologies are being broadly used in RF amplifiers due to their lower on- resistance and device capacitances compared with silicon (Si) devices. Therefore, this kind of semiconductor is well suited for high frequency power converters. The major problems involved with high frequency magnetics are skin and proximity effects, increased core and copper losses, unbalanced magnetic flux distribution generating localized hot spots, and reduced coupling coefficient. In order to eliminate the magnetic core losses which play a crucial role at higher operating frequencies, a coreless PCB transformer can be used. Compared to the conventional wire-wound transformer, a planar PCB transformer in which the windings are laid on the Printed Board Circuit (PCB) has a low profile structure, excellent thermal characteristics, and ease of manufacturing. Therefore, the work in this thesis demonstrates the design and analysis of an isolated low profile class DE resonant converter operating at 10 MHz switching frequency with a nominal output of 150 W. The power stage consists of a class DE inverter using GaN devices along with a sinusoidal gate drive circuit on the primary side and a class DE rectifier on the secondary side. For obtaining the stringent height converter, isolation is provided by a 10-layered coreless PCB transformer of 1:20 turn’s ratio. It is designed and optimized using 3D Finite Element Method (FEM) tools and radio frequency (RF) circuit design software. Simulation and experimental results are presented for a 10-layered coreless PCB transformer operating in 10 MHz.
Resumo:
Process systems design, operation and synthesis problems under uncertainty can readily be formulated as two-stage stochastic mixed-integer linear and nonlinear (nonconvex) programming (MILP and MINLP) problems. These problems, with a scenario based formulation, lead to large-scale MILPs/MINLPs that are well structured. The first part of the thesis proposes a new finitely convergent cross decomposition method (CD), where Benders decomposition (BD) and Dantzig-Wolfe decomposition (DWD) are combined in a unified framework to improve the solution of scenario based two-stage stochastic MILPs. This method alternates between DWD iterations and BD iterations, where DWD restricted master problems and BD primal problems yield a sequence of upper bounds, and BD relaxed master problems yield a sequence of lower bounds. A variant of CD, which includes multiple columns per iteration of DW restricted master problem and multiple cuts per iteration of BD relaxed master problem, called multicolumn-multicut CD is then developed to improve solution time. Finally, an extended cross decomposition method (ECD) for solving two-stage stochastic programs with risk constraints is proposed. In this approach, a CD approach at the first level and DWD at a second level is used to solve the original problem to optimality. ECD has a computational advantage over a bilevel decomposition strategy or solving the monolith problem using an MILP solver. The second part of the thesis develops a joint decomposition approach combining Lagrangian decomposition (LD) and generalized Benders decomposition (GBD), to efficiently solve stochastic mixed-integer nonlinear nonconvex programming problems to global optimality, without the need for explicit branch and bound search. In this approach, LD subproblems and GBD subproblems are systematically solved in a single framework. The relaxed master problem obtained from the reformulation of the original problem, is solved only when necessary. A convexification of the relaxed master problem and a domain reduction procedure are integrated into the decomposition framework to improve solution efficiency. Using case studies taken from renewable resource and fossil-fuel based application in process systems engineering, it can be seen that these novel decomposition approaches have significant benefit over classical decomposition methods and state-of-the-art MILP/MINLP global optimization solvers.
Resumo:
Heat management in mines is a growing issue as mines expand physically in size and depth and as the infrastructure grows that is required to maintain them. Heat management is a concern as it relates to the health and safety of the workers as set by the regulations of governing bodies as well as the heat sensitive equipment that may be found throughout the mine workings. In order to reduce the exposure of working in hot environments there are engineering and management systems that can monitor and control the environmental conditions within the mine. The successful implementation of these methods can manage the downtime caused by heat stress environments, which can increase overall production. This thesis introduces an approach to monitoring and data based heat management. A case study is presented with an in depth approach to data collection. Data was collected for a period of up to and over one year. Continuous monitoring was conducted by equipment that was developed both commercially and within the mine site. The monitoring instrumentation was used to assess the environmental conditions found within the study area. Analysis of the data allowed for an engineering assessment of viable options in order to control and manage the environment heat stress. An option is developed and presented which allows for the greatest impact on the heat stress conditions within the case study area and is economically viable for the mine site.
Resumo:
Because males and females of a species express many homologous traits, sex-specific selection on these traits can shift the opposite sex away from its phenotypic optimum. This mode of sexually antagonistic selection, known as intralocus sexual conflict (IaSC), arises when the evolution of sexual dimorphism is constrained by the two sexes sharing a common gene pool. As IaSC has been historically overlooked, many outstanding questions remain. For example, what is its contribution in maintaining genetic variation for fitness in populations? What characters underlie this variation in fitness? How does the selection history of the population influence the standing genetic variation? I used the model organism Drosophila melanogaster to attempt to resolve some of these questions. The first part of my Master’s project involved assessing the detectability of sexually antagonistic alleles in populations at different stages of adaptation to the laboratory. For the second part of my Master’s project, I looked for evidence of conflict during the development of body size, a well-known sexually dimorphic trait. While the first part of my thesis proved inconclusive, the second part revealed a surprising source of sexual conflict in pre-adult stages of D. melanogaster.
Resumo:
Background: The role of common, low to intermediate risk alleles in breast cancer need to be examined due to their relatively high prevalence. Among many cellular pathways, replication has a pivotal role in cell division and frequently targeted during carcinogenesis. Replication is governed by a host of genes involved in a number of different pathways. This study investigates the effects of replication-gene variants in relation to breast cancer and how this relationship is affected by ethnicity, menopausal status and breast tumour subtype. Methods: Data from a case-control study with 997 incident breast cancer cases and 1,050 age frequency matched controls in Vancouver, British Columbia and Kingston, Ontario were used. Unconditional logistic regression was used to calculate odds ratios between 45 replication gene variants and breast cancer risk, assuming an additive genetic model adjusted for age and centre, presented for Europeans and East Asians separately. Polytomous logistic regression was used to assess odds ratios between each SNP and four breast cancer subtypes defined by hormone receptor status among Europeans. All analyses were stratified by menopausal status. The Benjamini–Hochberg false discovery rate (FDR) was used to address multiple comparisons. Results: Among Europeans, the SNPs in FGFR2, TOX3 and 11q13 loci were associated with breast cancer after controlling for multiple comparisons. Test of heterogeneity showed the SNPs rs1045185, rs4973768, rs672888, rs1219648, rs2420946 among Europeans and rs889312 among East Asians conferred differential risk across the tumour subtypes. Conclusions: Specific SNPs in replication genes were associated with breast cancer, and the risk level differed by tumour subtype defined by ER/PR/Her2 status and ethnicity.
Resumo:
By virtue of its proximity and richness, the Virgo galaxy cluster is a perfect testing ground to expand our understanding of structure formation in the Universe. Here, we present a comprehensive dynamical catalogue based on 190 Virgo cluster galaxies (VCGs) in the "Spectroscopy and H-band Imaging of the Virgo cluster" (SHIVir) survey, including kinematics and dynamical masses. Spectroscopy collected over a multi-year campaign on 4-8m telescopes was joined with optical and near-infrared imaging to create a cosmologically-representative overview of parameter distributions and scaling relations describing galaxy evolution in a rich cluster environment. The use of long-slit spectroscopy has allowed the extraction and systematic analysis of resolved kinematic profiles: Halpha rotation curves for late-type galaxies (LTGs), and velocity dispersion profiles for early-type galaxies (ETGs). The latter are shown to span a wide range of profile shapes which correlate with structural, morphological, and photometric parameters. A study of the distributions of surface brightnesses and circular velocities for ETGs and LTGs considered separately show them all to be strongly bimodal, hinting at the existence of dynamically unstable modes where the baryon and dark matter fractions may be comparable within the inner regions of galaxies. Both our Tully-Fisher relation for LTGs and Fundamental Plane analysis for ETGs exhibit the smallest scatter when a velocity metric probing the galaxy at larger radii (where the baryonic fraction becomes sub-dominant) is used: rotational velocity measured in the outer disc at the 23.5 i-mag arcsec^{-2} level, and velocity dispersion measured within an aperture of 2 effective radii, respectively. Dynamical estimates for gas-poor and gas-rich VCGs are merged into a joint analysis of the stellar-to-total mass relation (STMR), stellar TFR, and Mass-Size relation. These relations are all found to contain strong bimodalities or dichotomies between the ETG and LTG samples, alluding to a "mixed scenario'' evolutionary sequence between morphological/dynamical classes that involves both quenching and dry mergers. The unmistakable differentiation between these two galaxy classes appears robust against different classification schemes, and supports the notion that they are driven by different evolutionary histories. Future observations using integral field spectroscopy and including lower-mass galaxies should solidify this hypothesis.
Resumo:
Purpose: Custom cranio-orbital implants have been shown to achieve better performance than their hand-shaped counterparts by restoring skull anatomy more accurately and by reducing surgery time. Designing a custom implant involves reconstructing a model of the patient's skull using their computed tomography (CT) scan. The healthy side of the skull model, contralateral to the damaged region, can then be used to design an implant plan. Designing implants for areas of thin bone, such as the orbits, is challenging due to poor CT resolution of bone structures. This makes preoperative design time-intensive since thin bone structures in CT data must be manually segmented. The objective of this thesis was to research methods to accurately and efficiently design cranio-orbital implant plans, with a focus on the orbits, and to develop software that integrates these methods. Methods: The software consists of modules that use image and surface restoration approaches to enhance both the quality of CT data and the reconstructed model. It enables users to input CT data, and use tools to output a skull model with restored anatomy. The skull model can then be used to design the implant plan. The software was designed using 3D Slicer, an open-source medical visualization platform. It was tested on CT data from thirteen patients. Results: The average time it took to create a skull model with restored anatomy using our software was 0.33 hours ± 0.04 STD. In comparison, the design time of the manual segmentation method took between 3 and 6 hours. To assess the structural accuracy of the reconstructed models, CT data from the thirteen patients was used to compare the models created using our software with those using the manual method. When registering the skull models together, the difference between each set of skulls was found to be 0.4 mm ± 0.16 STD. Conclusions: We have developed a software to design custom cranio-orbital implant plans, with a focus on thin bone structures. The method described decreases design time, and is of similar accuracy to the manual method.
Resumo:
Minimal research has explored what comprises a quality physical activity (PA) participation experience, particularly among military Veterans with a physical disability for whom evidence of the benefits of PA is growing. To address this research gap, this dissertation examines quality PA participation among military Veterans with a physical disability. Manuscript 1 explores the views of Veterans with a physical disability regarding what elements constitute a quality PA experience, and how these elements may be fostered. Eighteen Veterans with various physical disabilities and PA experiences participated in interviews. Four quality elements were identified via thematic analysis: group cohesion, challenge, having a role, and independence and choice. A further three factors (the physical and social environments, and program structure) were identified as precursors for a quality experience. Manuscript 2 explores how PA programs for Veterans with a physical disability are delivered, and how these delivery strategies link conceptually to quality participation. Interviews were conducted with program staff from three PA programs for Veterans, and program documentation collected, to develop an understanding of program delivery strategies. Four strategies with potential links to quality participation were identified through thematic analysis: foster social connections, challenge participants, tailor programs and outcomes to match participant needs, and include knowledgeable coaches and instructors. Manuscript 3 evaluates the participation of Veterans with functional impairments in PA events, and examines the relationships among quality precursors, quality elements, and participation outcomes. Results indicate that program participation did not promote long-term increases in PA indicators. However, an indicator of the quality element belongingness mediated the relationship at particular time-points between coach interpersonal skills and three participation outcomes: family integration, PA intentions, and PA planning. These findings suggest that a quality participation experience created by coaches may positively impact the transition to civilian life, and promote efforts to engage in ongoing PA. Overall, this dissertation contributes towards a greater depth in understanding of the experiences of Veterans with a physical disability in PA programs. The findings begin to provide a foundation for researchers and practitioners aiming to create, deliver, and promote quality PA interventions and programming for Veterans with a physical disability.
Resumo:
Electrical synapses are composed of gap junctions, made from paired hemi-channels that allow for the transfer of current from one neuron to another. Gap junctions mediate electrical transmission in neurons, where they synchronize spiking and promote rapid transmission, thereby influencing the coordination, pattern, and frequency of firing. In the marine snail, Aplysia calfornica, two clusters of neuroendocrine bag cell neurons use electrical synapses to synchronize a 30-min burst of action potentials, known as the afterdischarge, which releases egg-laying hormone and induces reproduction. In culture, paired bag cell neurons present a junctional conductance that is non-rectifying and largely voltage-independent. During the afterdischarge, PKC is activated, which is known to increase voltage-gated Ca2+ current; yet, little is understood as to how this pathway impacts electrical transmission. The transfer of presynaptic spike-like waveforms (generated in voltage-clamp) to the postsynaptic cell (measured in current-clamp) was monitored with or without PKC activation. It was found that pretreatment with the PKC activator, phorbol-12-myristate-13-acetate (PMA), enhanced junctional conductance between bag cell neurons. Furthermore, in control, presynaptic action potential waveforms mainly evoked postsynaptic electrotonic potentials at both -60 and -40 mV. However, with PKC activation the presynaptic stimulus consistently elicited postsynaptic action potentials from resting potentials of -40 mV, and would occasionally result in firing from repetitive input at -60 mV. Moreover, to assess whether this enhanced electrical transmission genuinely reflects a greater junctional conductance or a change in postsynaptic responsiveness, a fast-phase junctional-like current was applied to single bag cell neurons. Neurons in PMA always fired action potentials in response to current injection as opposed to control, which were less likely to spike. This outcome did not change when the junctional-like current was artificially enhanced in control conditions. Also, in response to fast- and slow-phase electrotonic potential (ETP) waveforms, Ca2+ current was markedly larger in single PMA-treated neurons. These findings suggest that PKC activation may contribute to afterdischarge fidelity by recruiting postsynaptic Ca2+ current to promote synchronous network firing. Finally, Aplysia gap junction genes (innexins) were transfected into mouse N2A cells and characterized. This revealed a biophysical and pharmacological profile similar to native gap junctions.
Resumo:
By investigating the mechanisms underlying the evolution and the maintenance of local adaptations we can help predict how species will adapt to future environmental change. In this thesis I investigate local adaptation and adaptive potential in thick-billed and common murres (Uria lomvia and U. aalge), two arctic seabirds of international conservation concern. Thanks to the recent development of new genomic methods, I address three major themes that are relevant for both the development of evolutionary theory and conservation: 1) the role of gene flow in the origin and maintenance of adaptation; 2) levels and distribution of standing genetic variation, and their contribution to adaptive potential; and 3) the genomic mechanisms maintaining an adaptive dimorphism within a single interbreeding population. First, I review the literature on genomics of local adaptation with gene flow and find that adaptation can be maintained despite gene flow, that gene flow itself can promote adaptation, and that genetic architecture is important in the origin and maintenance of local adaptations. Second, I genotype genome-wide markers and toll-like receptor genes (TLRs) to investigate local adaptation and adaptive potential in thick-billed murres. Thick-billed murres do not show signatures of local adaptation to their breeding grounds, but outlier loci group birds according to their non-breeding distributions, suggesting that selection and/or demographic connectivity in the winter may explain patterns of differentiation in this species. Genetic variation at TLRs does not decrease with increasing latitude as predicted, but tests of selection and measures of genetic diversity suggest differences in local selective regimes at most genes. Thick-billed murres show high levels of standing genetic variation and their adaptive potential will mostly depend on rate and magnitude of environmental change. Finally, I improve and annotate the assembly of the highly heterozygous genome of the thick-billed murre. Using this assembly as a reference, I perform whole genome analyses to investigate the genomic basis of an adaptive dimorphism in Atlantic common murres. I show for the first time that a 60 kb complex copy number variant in a non-coding region maintains differences in plumage and cold adaptation despite high gene flow.
Resumo:
Intensification of permafrost disturbances such as active layer detachments (ALDs) and retrogressive thaw slumps (RTS) have been observed across the circumpolar Arctic. These features are indicators of unstable conditions stemming from recent climate warming and permafrost degradation. In order to understand the processes interacting to give rise to these features, a multidisciplinary approach is required; i.e., interactions between geomorphology, hydrology, vegetation and ground thermal conditions. The goal of this research is to detect and map permafrost disturbance, predict landscape controls over disturbance and determine approaches for monitoring disturbance, all with the goal of contributing to the mitigation of permafrost hazards. Permafrost disturbance inventories were created by applying semi-automatic change detection techniques to IKONOS satellite imagery collected at the Cape Bounty Arctic Watershed Observatory (CBAWO). These methods provide a means to estimate the spatial distribution of permafrost disturbances for a given area for use as an input in susceptibility modelling. Permafrost disturbance susceptibility models were then developed using generalized additive and generalized linear models (GAM, GLM) fitted to disturbed and undisturbed locations and relevant GIS-derived predictor variables (slope, potential solar radiation, elevation). These models successfully delineated areas across the landscape that were susceptible to disturbances locally and regionally when transferred to an independent validation location. Permafrost disturbance susceptibility models are a first-order assessment of landscape susceptibility and are promising for designing land management strategies for remote permafrost regions. Additionally, geomorphic patterns associated with higher susceptibility provide important knowledge about processes associated with the initiation of disturbances. Permafrost degradation was analyzed at the CBAWO using differential interferometric synthetic aperture radar (DInSAR). Active-layer dynamics were interpreted using inter-seasonal and intra-seasonal displacement measurements and highlight the importance of hydroclimatic factors on active layer change. Collectively, these research approaches contribute to permafrost monitoring and the assessment of landscape-scale vulnerability in order to develop permafrost disturbance mitigation strategies.
Resumo:
Temperature has profound effects on the neural function and behaviour of insects. When exposed to low temperature, migratory locusts (Locusta migratoria) enter chill coma (neuromuscular paralysis) and can resume normal body functions after returning to normal temperature. Our laboratory has studied phenomena underlying environmental stress-induced comas in locusts and found that they are associated with a sudden loss of K+ homeostasis and also a temporary electrical silence in the central nervous system (CNS). However, the mechanisms underlying chill coma entry and recovery are not well understood, particularly the role of the CNS has not been determined. Here, I investigated neural function during chill coma in the locust by measuring electrical activity in the CNS. As pre-exposure to moderately low temperatures, either chronically (cold acclimation) or acutely (rapid cold hardening; RCH), has been found to improve the insect’s cold tolerance, I also determined cold acclimation and RCH protocols that will improve the locust's cold tolerance and whether these protocols affect neural shutdown during chill coma in the locust. With an implanted thermocouple in the thorax, I determined the temperature associated with a loss of responsiveness (CTmin) in intact male adult locusts. In parallel experiments, I recorded field potential (FP) in the metathoracic ganglion (MTG) in semi-intact preparations to determine the temperature that would induce neural shutdown. I found that acclimation at 10 ˚C and RCH at 4 ˚C reduced chill coma recovery time (CCRT) in intact animal preparations and RCH at 4 ˚C for 4 hours reduced the temperature at neural shutdown in semi-intact preparations. These results suggest that pre-exposure to cold can improve the locust's resistance to chill coma and support the notion that the CNS has a role in determining entry into and exit from chill coma in locusts.