97 resultados para shade avoidance
em Scielo Sa
Resumo:
The current knowledge of light quality effects on plant morphogenesis and development represents a new era of understanding on how plant communities perceive and adjust to available resources. The most important consequences of light quality cues, often mediated by decreasing in red far-red ratios with respect to the spectral composition of incident sunlight radiation, affecting weed-crop interaction are the increased plant height and shoot to root ratio in anticipation of competition by light quantity, water or nutrients. Although the concepts related to light quality have been extensively studied and several basic process of this phenomenon are well known, little applications of photomorphogenic signaling currently are related to agricultural problems or weed management. The objectives of this review are to describe how light quality change can be a triggering factor of interspecific interference responses, to analyze how this phenomenon can be used to predict weed interference, to reevaluate the critical periods of interference concept, and to discuss its potential contribution towards developing more weed competitive crop varieties. Knowledge on light quality responses involved in plant sensing of interspecific competition could be used to identify red/far-red threshold values, indicating when weed control should be started. Light quality alterations by weeds can affect grain crop development mainly in high yielding fields. Unlike the traditional concept or the critical period of competition, light quality mediated interference implies that the critical period for weed control could start before the effects of direct resource (water, nutrients and available light) limitation actually occur. The variability in light quality responses among crop genotypes and the identification of mutants insensitive to light quality effects indicate that this characteristic can be selected or modified to develop cultivars with enhanced interspecific interference ability. Knowledge on light quality-elicited responses represents a new possibility to understand the underlying biology of interspecific interference, and could be used in the development of new weed management technologies.
Resumo:
Initialism is a new word proposed to indicate the "shade-avoidance syndrome". Plants detect the presence of neighbor plants very early in the growing season through changes in light quality. They modify the allocation of photosynthesis products privileging shoot growth over the roots. One of the hypotheses of the authors is that, when weed management is timely scheduled, a "blind" crop could be more productive because it would avoid an imbalance on the shoot:root ratio (S:R). Two strategies were developed to test this hypothesis: a) to use the classical Yoda's Law to screen several crops for insensitivity to S:R imbalance; b) to evaluate several growth regulators to control the plant responses to crowding. Experimental results confirm that both strategies can yield insensitive plants. The possibilities of the use of this knowledge are discussed.
Resumo:
In this study, we concentrate on modelling gross primary productivity using two simple approaches to simulate canopy photosynthesis: "big leaf" and "sun/shade" models. Two approaches for calibration are used: scaling up of canopy photosynthetic parameters from the leaf to the canopy level and fitting canopy biochemistry to eddy covariance fluxes. Validation of the models is achieved by using eddy covariance data from the LBA site C14. Comparing the performance of both models we conclude that numerically (in terms of goodness of fit) and qualitatively, (in terms of residual response to different environmental variables) sun/shade does a better job. Compared to the sun/shade model, the big leaf model shows a lower goodness of fit and fails to respond to variations in the diffuse fraction, also having skewed responses to temperature and VPD. The separate treatment of sun and shade leaves in combination with the separation of the incoming light into direct beam and diffuse make sun/shade a strong modelling tool that catches more of the observed variability in canopy fluxes as measured by eddy covariance. In conclusion, the sun/shade approach is a relatively simple and effective tool for modelling photosynthetic carbon uptake that could be easily included in many terrestrial carbon models.
Resumo:
The Amazon Fund, created in 2008 by the Brazilian Federal Government, is managed by Banco Nacional de Desenvolvimento Econômico e Social (BNDES). It is a pioneering initiative to fundraise and manage financial resources to cut back deforestation and support sustainable development for 30 million inhabitants in the Amazon Biome. The Amazon Fund has already received more than R$ 1.7 billion in grants (about USD 787 million). This essay analyzes the Amazon Fund's governance and management with focus on its operation and from its stakeholders' perspectives. A combination of research methods includes: documental research, in-depth interviews, and speech analysis. The study offers a comparative analysis of strengths and weaknesses related to its governance. Furthermore, it proposes ways to improve its management towards greater effectiveness. The essay also includes an assessment of the government of Norway, a major donor to the fund. The governments of Norway and Germany, in partnership with Brazil, reveal how important it is to experiment with new means of international cooperation to successfully reduce greenhouse gas emissions through rainforest preservation.
Resumo:
Behavioral ecology of Heteragrion consors Hagen (Odonata: Megapodagrionidae): a shade-seek Atlantic forest damselfly. The intensity of the inter and intra-sexual selection can affect male behavioral traits as territorial fidelity and aggressiveness allowing the existence of different strategies. However, its differential success could be affected by environmental - as the diel variation in temperature - and physiological constrains - as the variation in thermoregulatory abilities. In this context, we present a behavioral analysis of Heteragrion consors (Zygoptera, Megapodagrionidae) trying to characterize its mating system, diel activity pattern, temporal budget, territoriality and reproductive biology. These data were obtained based on field observations using the focal individual method and mark-recapture techniques in 120 m of a shaded Atlantic Forest stream in Brazil. The males of this species were territorial, varying in its local fidelity, while the females appear sporadically. Males were perched in the majority of the time, but were also observed in cleaning movements, longitudinal abdominal flexion, wing flexion and sperm transfer during perch. The males presented a perched thermoregulatory behavior related to an exothermic regulation. Foraging and agonistic interactions were rare, but dominate the other behavioral activities. Abdominal movements associated to long lasting copula pointed to the existence of sperm competition in this species. Males performed contact post-copulatory guarding of the females. These observations pointed to a non-resource mating system for this species.
Resumo:
The application of organic wastes to agricultural soils is not risk-free and can affect soil invertebrates. Ecotoxicological tests based on the behavioral avoidance of earthworms and springtails were performed to evaluate effects of different fertilization strategies on soil quality and habitat function for soil organisms. These tests were performed in soils treated with: i) slurry and chemical fertilizers, according to the conventional fertilization management of the region, ii) conventional fertilization + sludge and iii) unfertilized reference soil. Both fertilization strategies contributed to soil acidity mitigation and caused no increase in soil heavy metal content. Avoidance test results showed no negative effects of these strategies on soil organisms, compared with the reference soil. However, results of the two fertilization managements differed: Springtails did not avoid soils fertilized with dairy sludge in any of the tested combinations. Earthworms avoided soils treated with sludge as of May 2004 (DS1), when compared with conventional fertilization. Possibly, the behavioral avoidance of earthworms is more sensitive to soil properties (other than texture, organic matter and heavy metal content) than springtails
Resumo:
Ipomoea asarifolia (Desr.) Roem. & Schultz (Convolvulaceae) and Stachytarpheta cayennensis (Rich) Vahl. (Verbenaceae), two weeds found in pastures and crop areas in Brazilian Amazonia, were grown in controlled environment cabinets under high (800-1000 µmol m-² s-¹) and low (200-350 µmol m-² s-¹) light regimes during a 40-day period. For both species leaf dry mass and leaf area per total plant dry mass, and leaf area per leaf dry mass were higher for low-light plants, whereas root mass per total plant dry mass was higher for high-light plants. High-light S. cayennensis allocated significantly more biomass to reproductive tissue than low-light plants, suggesting a probably lower ability of this species to maintain itself under shaded conditions. Relative growth rate (RGR) in I. asarifolia was initially higher for high-light grown plants and after 20 days started decreasing, becoming similar to low-light plants at the last two harvests (at 30 and 40 days). In S. cayennensis, RGR was also higher for high-light plants; however, this trend was not significant at the first and last harvest dates (10 and 40 days). These results are discussed in relation to their ecological and weed management implications.
Resumo:
Ipomoea asarifolia (Desr.) Roem. & Schultz (Convolvulaceae) and Stachytarpheta cayennensis (Rich) Vahl. (Verbenaceae), two weeds found in pastures and crop areas in the Brazilian Amazonia, Brazil, were grown in controlled environment cabinets under high (800-1000 µmol m-² s-¹) and low (200-350 µmol m-² s-¹) light regimes during a 40-day period. The objective was to determine the effect of shade on photosynthetic features and leaf nitrogen content of I. asarifolia and S. cayennensis. High-irradiance grown I. asarifolia leaves had significantly higher dark respiration and light saturated rates of photosynthesis than low-irradiance leaves. No significant differences for these traits, between treatments, were observed in S. cayennensis. Low-irradiance leaves of both species displayed higher CO2 assimilation rates under low irradiance. High-irradiance grown leaves of both species had less nitrogen per unit of weight. Low-irradiance S. cayennensis had more nitrogen per unit of leaf area than high-irradiance plants; however, I. asarifolia showed no consistent pattern for this variable through time. For S. cayennensis, leaf nitrogen content and CO2 assimilation were inversely correlated to the amount of biomass allocated to developing reproductive structures. These results are discussed in relation to their ecological and weed management implications.
Resumo:
The growth and biomass allocation responses of the tropical forage grasses Brachiaria brizantha cv. Marandu and B. humidicola were compared for plants grown outdoors, in pots, in full sunlight and those shaded to 30% of full sunlight over a 30day period. The objective was to evaluate the acclimation capacity of these species to low light. Both species were able to quickly develop phenotypic adjustments in response to low light. Specific leaf area and leaf area ratio were higher for low-light plants during the entire experimental period. Low-light plants allocated significantly less biomass to root and more to leaf tissue than high-light plants. However, the biomass allocation pattern to culms was different for the two species under low light: it increased in B. brizantha, but decreased in B. humidicola, probably as a reflection of the growth habits of these species. Relative growth rate and tillering were higher in high-light plants. Leaf elongation rate was significantly increased on both species under low light; however, the difference between treatments was higher in B. brizantha. These results are discussed in relation to the pasture management implications.
Resumo:
Recent studies on coffee (Coffea arabica L.) cultivation in agroforestry systems in Southern Brazil have shown the potential of partial shading to improve management of this crop. The objective of this work was to evaluate microclimatic conditions and their effects on coffee production of plants shaded with pigeon pea (Cajanus cajan) in comparison to unshaded ones, from May 2001 to August 2002 in Londrina, State of Paraná, Brazil. The appraised microclimatic characteristics were: global radiation, photosynthetic and radiation balance; air, leaf and soil temperatures; and soil humidity. Shading caused significant reduction in incident global solar radiation, photosynthetically active radiation and net radiation, and attenuated maximum leaf, air and soil temperatures, during the day. Shade also reduced the rate of cooling of night air and leaf temperatures, especially during nights with radiative frost. Soil moisture at 0-10 cm depth was higher under shade. The shaded coffee plants produced larger cherries due to slower maturation, resulting in larger bean size. Nevertheless, plants under shade emitted less plagiotropic branches, with smaller number of nodes per branch, and fewer nodes with fruits, resulting in a large reduction in coffee production. These results show the need to find an optimal tree density and management that do not compromise coffee production and protect against extreme temperatures.
Resumo:
Bauhinia variegata and B. variegata var. candida, commonly known as orchid trees, are small sized trees widely used for urban forestry and landscaping. Adult plants grow under full sun; in Brazil, however, seedlings are generally cultivated in commercial nurseries under natural half-shading. The objective of this study was to evaluate the influence of different colored shade nets and light conditions on the initial growth of B. variegata and B. variegata var. candida. The influence of six light conditions (red net with 50% shading; blue net with 50% shading; black net with 70% shading; black net with 50% shading; black net with 30% shading; and full sun) on the initial growth of B. variegata and B. variegata var. candida were evaluated along 160 days, and growth relationships were calculated. Seedlings showed more efficiency on the use of photoassimilated compounds when grown under full sun. Such condition is the most appropriate for seedling production of B. variegata and B. variegata var. candida, contradicting what has been performed in practice.
Resumo:
This work aimed to evaluate the preference and water consumption of native goats in the semiarid of Brazil. The water was freely supplied, in individual buckets, one exposed to the sun and the other in the shade. The experiment was realized using 18 animals of Moxotó, Graúna and Azul breeds, with average weight of 16,6 ± 2,4 kg, kept in confinement in individual stalls equipped with feeders and drinkers, during the period from January to February of 2009. The water temperature was measured by sensors (thermocouples type T - copper/constantan), which were coupled to a system of data acquisition. It was observed that the average water temperature exposed to the sun was 29.02 ºC, and 23.85 ºC in the shade. For all breeds there was a preference for the water exposed to the sun, corresponding to an average consumption of 64.71% of the total. Among the breeds, the greatest preference for water exposed to the sun was the Azul (71.18%), followed by the Moxotó (65.95%) and the Graúna (57.00%). The animals consumed more water during the day, and the average water consumption was 1.15 grams day-1, corresponding to 6.9 % of body weight of the animals.
Resumo:
The effects of shade on growth, biomass allocation patterns and photosynthetic response was examined for Rolandra fruticosa (L.) Kuntze, a common perennial weed shrub in cultivated pastures and agricultural areas of Brazilian Amazonia, for plants grown in full sunlight and those shaded to 30 % of full sunlight over a 34-d period. Specific leaf area and leaf area ratio were higher for shade plants during all the experimental period. Shade plants allocated significantly less biomass to root tissue than sun plants and relative growth rate was higher in sun plants. Sun leaves had significantly higher dark respiration and light saturated rates of photosynthesis than shade leaves. The apparent quantum efficiency was higher for shade leaves, while light compensation point was higher for sun leaves. These results are discussed in relation to their ecological and weed management implications.
Resumo:
We investigated the long-lasting effect of peripheral injection of the neuropeptide substance P (SP) and of some N- or C-terminal SP fragments (SPN and SPC, respectively) on retention test performance of avoidance learning. Male Wistar rats (220 to 280 g) were trained in an inhibitory step-down avoidance task and tested 24 h or 21 days later. Immediately after the training trial rats received an intraperitoneal injection of SP (50 µg/kg), SPN 1-7 (167 µg/kg) or SPC 7-11 (134 µg/kg). Control groups were injected with vehicle or SP 5 h after the training trial. The immediate post-training administration of SP and SPN, but not SPC, facilitated avoidance behavior in rats tested 24 h or 21 days later, i.e., the retention test latencies of the SP and SPN groups were significantly longer (P<0.05, Mann-Whitney U-test) during both training-test intervals. These observations suggest that the memory-enhancing effect of SP is long-lasting and that the amino acid sequence responsible for this effect is encoded by its N-terminal part
Resumo:
Training in step-down inhibitory avoidance (0.3-mA footshock) is followed by biochemical changes in rat hippocampus that strongly suggest an involvement of quantitative changes in glutamate AMPA receptors, followed by changes in the dopamine D1 receptor/cAMP/protein kinase A (PKA)/CREB-P signalling pathway in memory consolidation. AMPA binding to its receptor and levels of the AMPA receptor-specific subunit GluR1 increase in the hippocampus within the first 3 h after training (20-70%). Binding of the specific D1 receptor ligand, SCH23390, and cAMP levels increase within 3 or 6 h after training (30-100%). PKA activity and CREB-P levels show two peaks: a 35-40% increase 0 h after training, and a second increase 3-6 h later (35-60%). The results correlate with pharmacological findings showing an early post-training involvement of AMPA receptors, and a late involvement of the D1/cAMP/PKA/CREB-P pathway in memory consolidation of this task